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The population of observed gravitational wave transients continues to grow, and with it, our
ability to further constrain deviations from the signals predicted by general relativity. However, our
current procedures for computing these constraints will not successfully scale with future transient
catalogs. Thus, we leverage modern statistical methods into a new hybrid sampling method, in order
to provide more efficient and more complete investigations of the parameter space of deviations from
general relativity given gravitational wave observations of binary black hole mergers.

I. INTRODUCTION

General relativity is currently our most successful the-
ory of gravity. However, modern developments in both
theoretical and observational physics may provide hints
that general relativity may not be a complete theory
of gravity. For example, mathematical developments in
string theory and quantum gravity have the potential
to provide a unified theory of gravitation across length
scales. Some of the most popular alternatives to gen-
eral relativity that address theoretical and observational
concerns include scalar-tensor theories [1] and dynamical
Cherns-Simons gravity [2].

General relativity has been rigorously tested in the
non-dynamical, weak-field regime, through experiments
like the Gravity Probe B experiment and time-delay mea-
surements with the Cassini space probe [3]. It has passed
these tests with flying colors. Thus, the next gravita-
tional frontier lies in the highly dynamical, strong-field
regime of compact object mergers. LIGO has already
begun tests in this regime, analyzing both single-events
[4, 5] and the burgeoning population of gravitational
wave transients [6–8], and to date has not yet identified
deviations from general relativity.

The number of observed mergers will only continue to
grow, further enhancing our resolution on key parame-
ters describing the strong-field regime. However, this also
necessitates that our statistical and computational tech-
niques can support larger and more complex analyses.
Current population analyses searching for non-GR effects
like [8], based on the procedure of single-event analyses
like [4], are approaching limits of reasonable computa-
tional efficiency.

Previous work with this approach includes tests with
single events (a single BBH [4] and a single neutron star-
neutron star merger [5]), as well as tests with observing
run O1 [6], the first gravitational wave transient cata-
log (GWTC-1) [7], and most recently with GWTC-2 [8].
We will briefly focus on the last study, as we intend to
improve upon this analysis in particular.

In Section V, subsection A of [8], the authors con-
strain a set of parameters δϕ̂i that denote deviations
from coefficients in a phenomenological approximation
to the waveform during the inspiral phase (see equa-

tion 4 of [8]). Using, alternatively, the SEOBNRv4 ROM
and IMRPhenomPv2 models, and LALInference, [8] varies
each parameter ϕ̂i. From the modifications to the pre-
dicted waveforms with these variations, they construct
posterior distributions on the parameterized violations of
general relativity (see Figure 6 of [8]). Ultimately, they
find no evidence for violations of general relativity.

However, there are two key limitations in the method
employed by [8] that we seek to remedy. First, the
method in [8] is computationally expensive. They begin
with a set of 15 parameters from general relativity, with

an additional variation parameter δφ̂i. So, in total, they

must infer a set of 16 parameters for each variation δφ̂i,
requiring many evaluations of the signal model in order

to explore the parameter space of physically relevant δφ̂.
Second, their method only varies one parameter ϕ̂i at a
time, due to the computational expensive involved in one
parameter variation and an observed loss of information
in posterior distributions with multiple parameter varia-
tion. Although there is reason to believe that variations
in one parameter may be sufficient [8], there remains the
possibility that violations of general relativity will only
appear in multi-coefficient deviations from the PN ex-
pansion.

The goal of this work is to improve this analysis pro-
cedure with a new method for parameter estimation: hy-
brid sampling. This method is more computationally ef-
ficient, allowing us to scale our analysis as the population
of observed mergers grows, and further constrain devia-
tions in gravitational wave signals predicted by general
relativity.

In this paper, we outline work completed in the LIGO
SURF 2021 program. In Section II, we provide relevant
background and description of the statistical methods
used to implement hybrid sampling. In Section IV, we de-
scribe the physical context of astrophysical gravitational
wave generation and the particular waveform approxima-
tion we use, as well as a physically-motivated method for
constraining the priors on deviations from GR. In Section
V, we describe initial results of gravitational wave param-
eter estimation with hybrid sampling, and in Section VI
we summarize our current work and outline future re-
search directions.
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II. PARAMETER ESTIMATION METHODS

A. Bayesian Inference

For our description of Bayesian inference, we will be-
gin by following the description and notation of [9]. In
Bayesian inference, we consider a set of parameters θ in
the context of the data d. For a physical situation of
interest, we will have a model parameterized in terms of
θ. For example, in this work, we will have a set of pa-
rameters which includes black hole binary properties (like
mass and spin), with additional parameters to denote de-
viations from the predictions of general relativity. Our
goal is to constrain these parameters given the data; sta-
tistically, we want to construct the posterior distribution
p(θ|d), read as “the probability of getting a particular set
of parameter values given observed data.”

Bayesian inference allows us to construct the posterior
distribution via Bayes’ theorem, which relates p(θ|d) to
our observations:

p(θ|d) =
L(d|θ)π(θ)

Z
(1)

where L(d|θ) is known as the likelihood, π(θ) is the prior
distribution. The normalization factor Z is known as the
evidence, i.e. the probability of observing the data given
the parameteric model we choose:

Z ≡
∫
dθL(d|θ)π(θ) (2)

The likelihood is a model for our observations under
different parameters θ, and includes a model for noise;
for gravitational wave observations, we most commonly
use a likelihood that assumes Gaussian detector noise.
The prior distribution is, effectively, an initial guess for
the distribution of parameter values; when making this
guess, we need to ensure that we do not bias the posterior
distribution, and so may choose, for example, a uniform
prior distribution.

We observe that p(θ|d) provides a distribution on the
entire (multi-dimensional) set of parameters θ. To ex-
tract information on specific parameters of interest θi,
we must “marginalize”, i.e. integrate, over the rest of
the parameters:

p(θi|d) =

∫ ∏
k 6=i

dθk

 p(θ|d) (3)

This integration may be difficult to compute through
standard numerical methods, especially if we have a high-
dimensional parameter space. One common method is to
use a Monte Carlo Markov Chain (MCMC) approach to
approximate the posterior distribution. In this approach,
a series of “walkers” explore the space of parameters θ
in such a way that, given enough iterations, their paths
will produce a representative sample of the posterior dis-
tribution.

Finally, in order to combine observations from multiple
events that we suspect are part of a contiguous popula-
tion (e.g. a population of binary black hole mergers) we
will use a hierarchical analysis. In a hierarchical analysis,
we assume that the parameters we infer given each obser-
vation are drawn from the same underlying distribution.
For example, we will see that we assume parameterization
of deviations from general relativity are common among
all binary black hole mergers, and thus these deviations
are drawn from the same posterior hyperparameter dis-
tribution. The mechanics of hierarchical inference rely
on the same mechanics of standard Bayesian inference,
wherein we seek to infer hyper-parameters given a popu-
lation of observations through application of Bayes the-
orem and numerical techniques like MCMC.

B. Nested Sampling

For the first step of the hybrid sampling method, we
use nested sampling. As developed in [10], the primary
goal of nested sampling is to evaluate the evidence Z
using an intelligent division of the prior mass.

Conceptually, when we take part of the prior mass over
some domain of our parameters, there is an associated
part of the likelihood surface associated to it via that
same domain. We can parameterize the prior mass in
terms of λ, a lower bound on the likelihood surface, which
will limit the part of the parameter space, and thus prior
mass that we accumulate. Mathematically,

X(λ) =

∫
L(θ)>λ

π(θ)dθ. (4)

Therefore, our evidence from Equation (2) becomes

Z =

∫ 1

0

L(X)dX. (5)

Numerically, we can approximate Z as a weighted sum
of values L(X), e.g.

Z ≈
N∑
i=1

wiLi (6)

for some number of samples N , with weights wi that are
chosen by some numerical integration rule, and thus de-
pendent on how we divide up the domain of L(X), X.
For example, if we were to use trapezoidal integration,
wi = 1/2(Xi−1 −Xi+1). Then, the challenge of any im-
plementation of nested sampling is to properly choose
which points Xi, and associated Li, to use in calculat-
ing Z. A “crude” method introduced by [10] is to use
Xi = exp(−i/N), and in effect, draw increasingly tight
contours on the likelihood surface, as shown in Figure 1.
More advanced implementations may perform sampling
within these contour regions, e.g. with monte carlo tech-
niques, but remain conceptually similar. For this work,
we use the dynesty nested sampler [11].
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FIG. 1: The above figure is adapted from [10]. As we
choose Xi, we associate each with a value of the

likelihood Li that defines a contour on the likelihood
surface. (Note, Skilling uses Li instead of Li).

Once the evidence has been calculated, we can triv-
ially generate samples from the posterior distribution by
resampling according to wiLi in Equation (6).

The key benefit of nested sampling, especially in the
context of a hybrid approach, are to computationally ef-
ficient compression of the prior mass into information on
the evidence, and thus the posterior. Additionally, nested
sampling has been widely used in other LIGO parame-
ter estimation activities, such as in analysis of GWTC-2
[12]. However, while nested sampling can provide ever
increasing precision on the evidence by increasing N , the
number of posterior samples generated is determined by
the number of points as well as the shape of the like-
lihood surface (although methods to mitigate this have
been suggested, e.g. dynamic nested sampling [11]).

C. Parallel-Tempered Ensemble Monte Carlo
Markov Chains

In contrast with nested sampling, MCMC methods
directly explore the posterior and can be run as long
as necessary, continually generating additional samples
from the posterior distribution. Ensemble MCMC meth-
ods build upon existing MCMC methods by replacing
a single walker, as used in traditional approaches like
the Metropolis-Hastings algorithm, with an ensemble of
walkers that explore the parameter space in parallel [13].
A key feature of this approach is that we can reduce the
number of samples we need to generate for our Bayesian
inference methods, as at any single step the ensemble of
walkers provides us a representation of the target poste-
rior distribution.

Further, ensemble MCMC results can be parallel-
tempered to explore isolated modes in the posterior dis-
tribution by raising the posterior to a “temperature” βT ,
like

pβT (θ|d) =
LβT (d|θ)π(θ)

ZβT
. (7)

A parallel-tempered ensemble MCMC method then uses

a number of walkers, in parallel, each exploring a tem-
pered likelihood surface LβT .

Finally, we note that MCMC methods can converge
more quickly and accurately when given starting con-
ditions that are close to the true values we are trying
to estimate. Thus, we will use the results from another
method, like nested sampling, to provide the initial con-
ditions for hybrid sampling, under the assumption that
they are near the desired values. As we next show in Sec-
tion III B, this model is effective even when the model has
been misspecified in the first hybrid sampling step. In
this work, we use the ptemcee implementation of parllel-
tempered ensemble MCMC [13, 14].

D. Hybrid Sampling

We employ a hybrid sampling algorithm whereby
nested sampling generates an initial solution to a sim-
ple problem and parallel-tempered ensemble MCMC is
used to extend this to a more complex problem. Rel-
ative to one another, the simple problem may rely on
a low-dimensional, non-degenerate, and well-understood
model, while the complex case may have more dimen-
sions, more degenercies, or be less well-understood. In
the context of testing GR, the simple case assumes that
GR is correct, and the more complex problem includes
additional, degenerate, non-GR deviation parameters.

We have implemented this using the dynesty
nested sampler and ptemcee parallel-tempered ensem-
ble MCMC sampler. To properly initialize ptemcee on
dynesty output, we need to create starting points for
each tempered chain from the results of nested sampling.

In dynesty, a key part of these results are the “pos-
terior weights” pi that determine how each sample from
the joint parameter distribution is weighted in construct-
ing the final posterior. From Equation (36) in [10], the
posterior weights are

pi =
Liwi
Z

. (8)

We construct tempered versions of these weights by rais-
ing the likelihood and evidence in pi to a series of powers
βT ; as in Equation (7),

pi,βT =
LβTi wi
ZβT

. (9)

An example of these tempered posterior weights is shown
in Figure 2; we note that βT = 1 corresponds to the
original posterior weights and in the limit βT = 0 we
recover the prior.

For each βT , we then perform rejection sampling on
the normalized weights pi,βT /

∑
i pi,βT to obtain repre-

sentative initial positions for parallel tempered walkers
in ptemcee.
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FIG. 2: Tempered posterior weights at five
temperatures in the form of Equation (9), chosen by the
ptemcee make ladder method. Sample number is i in
Equation (6) and Figure 1; increasing sample number

corresponds to including a smaller region further up the
likelihood surface, as pictorially described in Figure 1.

III. HYBRID SAMPLING WITH A
GENERALIZED NORMAL DISTRIBUTION

To test our hybrid sampling framework, we consider a
generalized normal distribution model with the probabil-
ity density function

P (x) =
β

2αΓ(1/β)
e−(|x−µ|/α)

β

. (10)

Here α takes a role akin to the standard deviation σ in a
normal distribution. We note that, in the limit of β = 2,
this becomes a normal distribution (and we have α =√

2σ), and as β →∞, the generalized normal distribution
approaches a tophat function.

For the first stage, we use a normal distribution as
the “simple” model and sample with dynesty. Follow-
ing this, we initialize ptemcee using the output of the
nested sampling algorithm with initial values for β clus-
tered about β = 2. Then, to check our results, we sample
in the more complex model directly using dynesty.

A. Well-Specified Models

We demonstrate that this procedure could recover the
parameters of normally distributed data, i.e. where both
the first and second hybrid sampling steps had properly
specified models.

Starting with the nested sampler dynesty, we infer the
mean µ and standard deviation σ of a normal distribution
generated with µ = 3 and σ = 4. The results of this first
step are shown in Figure 3.

Then, we tempered the nested sampling results and
provided them as initializations for ptemcee, sampling in
the more complex generalized normal distribution. The
results of this analysis are shown in 4. From this figure,

FIG. 3: Marginal and joint distributions on µ and σ
inferred with dynesty.

FIG. 4: Marginal and joint distributions on µ, α, and β
inferred with ptemcee, using tempered dynesty input

weights.

we achieve β = 2 for a normal distribution, as expected,
and approximately recover µ = 3 and α =

√
(2)σ =

4
√

2 ≈ 5.5.



5

FIG. 5: Marginal and joint distributions on µ, α, and β
inferred the hybrid sampling procedure (orange and

blue), and with only dynesty (green).

B. Misspecified Models

Next, we demonstrate our method when the model is
misspecified in the first step. We use use data drawn from
a generalized normal distribution with β = 8, α = 4

√
2,

and µ = 3 as input into the first step.
Hybrid sampling was able to recover these parameters

despite assuming only a normal distribution in the first
step, as shown in Figures 5 and 6. Also shown in these fig-
ures, we performed the same parameter estimation with
only dynesty sampling in the generalized normal distri-
bution, and achieved the same results, lending confidence
to our hybrid sampling method.

IV. GRAVITATIONAL WAVE SIGNAL
GENERATION

A. Anatomy of a Binary Black Hole Merger

A BBH merger can be described by 15 intrinsic param-
eters (such as masses and spins) and extrinsic parame-
ters (characterizing location and orientation); As these
are inferred from a GR waveform, we refer to these as
“GR parameters”. We can divide a BBH merger into
three time-domains, in order: the inspiral, merger, and
ringdown [8]. The inspiral phase begins when the black
holes have formed a binary system. This phase is typi-
cally characterized by quasi-circular orbits, and lasts un-
til weak-field approximations like the post-Newtonian ex-
pansion breakdown. The point at which inspiral approx-
imations break down depends on the component masses

FIG. 6: Posterior predictive distributions, drawn from
the distributions shown in Figure 5. Shaded regions are

bounded between the 5th and 95th percentiles of the
data, and lines are drawn at the mean.

in the system. Following the inspiral is the merger phase,
which begins with a “plunge”. In the plunge, the quasi-
circular orbits suddenly become unstable, and the hori-
zons merge. This phase is only possible to describe
through numerical methods. Finally, the ringdown phase
is the asymptotic relaxation of the combined black hole
to a stable, isolated black hole state. This phase is well-
described by analytical quasi-normal modes (QNMs).

Each regime is traditionally modeled through differ-
ent mathematical and computational methods, owing to
their differing physical time and length scales. The in-
spiral phase can be modeled analytically, through a pa-
rameterized post-Newtonian (PN) expansion of the grav-
itational potential. This formalism was introduced in
its modern form by [15], and specified for gravitational
wave emission from compact object mergers by [16] and
[17]. As initially identified by [15], each term in the PN
expansion can vary depending on the underlying theory
of gravity and so is one of the key quantitative models
for differentiating between alternative theories of gravity.
The merger phase can only be fully understood through
numerical relativity simulations, as it is described with
nonlinear field equations in the chosen theory of gravity;
for a recent example, see [18]. Quasi-normal modes can
be understood analytically, and are specified by mode
frequencies and damping times that depend on the as-
sumed model of gravity [8, 19]. In this work, we focus on
testing GR during the inspiral phase, as this provides a
purely phenomenological framework without the need to
specify a particular theory from the outset.

B. TaylorF2 Waveform Generation

To generate gravitational wave signals, we used the
TaylorF2 waveform approximant. This is a PN expan-
sion of the gravitational wave strain in the frequency do-
main, broken into expansions of the amplitude and phase
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of the signal, as

h̃(f) = APNe
−iψ(f) (11)

where A is the amplitude and ψ is the phase; both may
depend on intrinsic or extrinsic parameters of the BBH.
The form of the amplitude expansion, in geometric units
(c = G = 1) is

APN = A0

∑
i

Ai(πf)i/3. (12)

Typically, for TaylorF2, only one term in the expan-
sion is used. This yields, with physical units,

APN =

√
5

24

π

η

m1m2

dL

(
πMf

G

c3

)−7/6
, (13)

where m1,m2 are the component masses of the BBH (by
convention, m1 ≥ m2), M = m1 + m2, η = m1m2/M

2

is the symmetric mass ratio, and dL is the luminosity
distance to the BBH.

The phase is calculated with an expansion of the form
to 3.5PN order, adapted from [20],

ψ(f) = −π
4

+
3

128ηv5

7∑
i

ϕiv
i, (14)

where v =
(
πMfGc−3

)1/3
(we nominally set the time,

tc, and phase, φc, of coalescence to zero). The coefficients
ϕi can be found in Equation 3.18 of [20]; for example,

ϕ1 = v−1, (15)

ϕ2 =
20

9

(
743

336
+

11

4
η

)
. (16)

Although this approximant is already implemented in
PyCBC, we manually implemented these waveforms in
python, so that we could directly add non-GR correc-
tions to the phase terms, effectively yielding

ψ(f) = −π
4

+
3

128ηv5

7∑
i

(ϕi + δϕi) v
i (17)

with non-GR corrections δϕi. In future, we could apply
similar corrections to the amplitude terms Ai, although
LIGO is less sensitive to these deviations.

We verified our implementation of TaylorF2 by check-
ing that it replicates the amplitude and phase evolution
of the implementation found in PyCBC [21].

C. Overlap Calculation

As described in Equation (17), the non-GR corrections
δϕi can take any real value. However, we operate under
the assumption that at the very least GR is nearly cor-
rect, and so there should be a limit on the magnitude

of δϕi. Therefore, we will ultimately impose a cut on
the prior distributions for δϕi based on how “similar” a
waveform with δϕi 6= 0 is to a fully-GR waveform.

In practice, we implement this prior cut by calculat-
ing the magnitude of the complex overlap O between two
frequency-domain waveforms, h̃1(f), h̃2(f), and throwing
out any waveforms generated during our sampling pro-
cedure where O is less than some limit. In our imple-
mentation, one waveform is the pure-GR waveform, and
the other includes non-GR corrections. The overlap is
calculated as

O =

∣∣∣∣∣∣∣∣
〈
h̃1(f), h̃2(f)

〉
√〈

h̃1(f), h̃1(f)
〉〈

h̃2(f), h̃2(f)
〉
∣∣∣∣∣∣∣∣ , (18)

where we take the absolute value to maximize over an ar-
bitrary phase shift; as a phase shift would correspond to
a different merger time, our overlap calculation neglects
time offsets when comparing GR and non-GR signals.
In this calculation, 〈·, ·〉 denotes an inner product of the
form 〈

h̃1(f), h̃2(f)
〉

= 4∆f

N∑
i

h̃1,ih̃
∗
2,i

Si
, (19)

where we sample each waveform, as well as a detector
power spectral density S, at N discrete sampling fre-
quencies, evenly spaced in frequency by ∆f .

We performed an initial investigation of how the over-
lap varies with mass ratio q at fixed values of the total
mass M , qualitatively identifying how a minimum over-
lap of O ≥ 0.9 would limit the parameter space. As
shown in Figure 7, we observed that as the total mass M
increases, so does the spread in O versus δϕ2, meaning
that more values of δϕ2 would be allowed with a cutoff
of O ≥ 0.9.

V. RESULTS

We demonstrate our hybrid sampling method using
simulated gravitational wave signals in two cases; in the
first, where there are no deviations from GR, and in the
second, where there is a deviation from GR.

A. Recovery of GR Parameters

We first inject a purely-GR signal (with all δϕi = 0),
with the goal of recovering the signal parameters using
hybrid sampling, in an effort to test both our sampling
procedure and TaylorF2 implementation. To inject a
signal, we model the waveform with certain GR param-
eters and then simulate data as measured by the LIGO
Hanford and Livingston detectors, including the power
spectral density corresponding to the Advanced LIGO
design sensitivity.
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FIG. 7: Overlap with respect to variations in the mass ratio q, at four fixed total masses M . The horizontal dotted
line shows the cutoff O = 0.9, and the vertical dotted line shows δϕ2 = 0.
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We injected a pure-GR signal with the following pa-
rameters: component masses m1 = 36M�, m2 = 29M�
(corresponding to a chirp mass M = 28.1M� and mass
ratio q = 0.8), dimensionless black hole spin parameters
a1 = a2 = 0, inclination angles of 0, polarization angle
ψ = 2.659, angle between the total angular momentum
of the system and observer’s line of sight θjn = 0.4, geo-
center time of tc = 1126259642.413, right ascension and
declination of 1.375 and −1.2108, and a luminosity dis-
tance of dL = 2000 Mpc. We performed our initial nested
sampling step by varying a subset of the GR parameters,
in particular, M, q, dL, tc (and marginalizaing over the
phase of the signal). Then, in the second step, we also
allow δϕ2 to vary, with the goal of recovering δϕ2 = 0.
We also performed the full analysis, including variation
of δϕ2, with dynesty to verify our results.

As shown in the top left panel of Figure 8, we are
able to recover the injected waveform parameters of a
purely-GR signal.

B. Recovery of non-GR Corrections

Then, we injected non-GR waveforms, with δϕ1 =
10−5, M = 8M�, mass ratio q = 1, luminosity distance
dL = 200 Mpc, and marginalizing over the geocent time
and the phase of the signal. We used an overlap cut on
the priors, only allowing waveforms with O ≥ 0.9. Con-
ceptually, we can understand this overlap cut as a prior
assumption that GR is at least 90% correct in its descrip-
tion of the inspiral phase of BBH mergers.

At first, we found that the posterior distribution on
δϕ1 returned the uniform prior, cut by the overlap limit;
we effectively had no information on the value of δϕ1, as
shown in the top right panel of Figure 8. This signal had
a signal-to-noise-ratio (SNR) of 50. Under the hypothe-
sis that this SNR may have been too low to resolve the
posterior on δϕ1, we performed subsequent trials with
increasing M, at the same dL, to raise the SNR. With
M = 15M� and dL = 200 Mpc, the injected signal had
an SNR of 80, and the resultant posteriors are shown in
the bottom right panle of Figure 8. Although the pos-
terior on δϕ1 is no longer strictly the prior, it is still
uninformative. Finally, with M = 30M� and dL = 200
Mpc, the injected signal had an SNR of 140, and we found
an informative posterior distribution on δϕ1, as shown in
the bottom left panel of Figure 8. Thus, we observe that
if we assume GR is correct to a 90% level, we cannot dis-
tinguish between GR and non-GR models for the inspiral
phase of BBH mergers with an SNR less than 100.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we implemented a hybrid sampling
method using nested sampling to solve a simple parame-

ter estimation problem, and then subsequently parallel-
tempered ensemble MCMC to solve a more complex pa-
rameter estimation problem. We applied this to a toy
model using the generalized normal distribution, demon-
strating that hybrid sampling is able to return the same
results as the well-tested dynesty sampler used on its
own. In particular, we demonstrated that hybrid sam-
pling performs well with this toy model, even when the
model in the first step is misspecified.

Then, we used hybrid sampling to perform parameter
estimation on gravitational wave signals generated with
the TaylorF2 waveform approximant. We demonstrated
that hybrid sampling is able to infer the a limited set of
GR waveform parameters, as well as the non-GR varia-
tion parameter δϕ1 accurately, in both pure and non-GR
waveforms (i.e. δϕ1 = 0 and δϕ1 6= 0 cases). However,
we observed that in order to return informative posterior
distributions on δϕ1, we need to inject a signal with SNR
greater than 100.

In our hybrid sampling model, we only need the results
of the first step, assuming GR is correct, once; then, from
these results, we can conduct many non-GR analyses,
varying different sets of deviation parameters. In the
future, we will repeat the same analysis on the full set of
15 GR parameters and one non-GR variation parameter;
if this analysis is successfully, we will again repeat the
analysis with different sets of multiple simultaneous non-
GR variations. In addition, we will further investigate
the SNR required to gain information on δϕi, with the
aim of identifying lower limits on the signal properties
required to identify deviations from GR in the context of
current and next-generation gravitational wave detectors.
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FIG. 8: Posteriors generated via hybrid sampling for parameters of pure-GR and non-GR waveforms. The lines and
points in orange denote injected waveform parameters. Clockwise, starting from top left, these plots are for: a
pure-GR waveform with injected δϕ2 = 0, a non-GR waveform with an SNR of 50 with injected δϕ1 = 10−5, a

non-GR waveform with an SNR of 80 with injected δϕ1 = 10−5, and a non-GR waveform with an SNR of 140 with
injected δϕ1 = 10−5. We estimated the geocenter time tc for a pure-GR waveform in the first panel, and performed

time marginalization in the non-GR cases to speed up parameter estimation. We note that our distributions on
non-GR parameters are uninformative until we study the signal with the highest SNR, in the last panel at the
bottom left. In this panel, we also overlay the same parameter estimation performed with the dynesty sampler

alone, shown in green, and recover the same distributions.
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