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The amplitude of the noise in laser interferometric data limits the astrophysical information that
can be extracted from it. LIGO has a strong history in reducing the linear and stationary noise at
different frequencies by monitoring auxiliary sensors and the correlation with the estimated strain
at a given time. Recently, it was shown that nonlinear correlations could be used to reduce the noise
even further for the case of the noise spectral density around 60 Hz in laser interferometers.|1] The
approach involved utilizing two types of auxiliary channels, each with different spectral content. In
this project, a similar methodology will be investigated for the lower part of the LIGO spectrum
(around and below 10 HZ) where the gravitational wave memory from Core Collapse Supernovae
[2] and pre-merger binary star signals have significant energy.

I. INTRODUCTION
A. Astrophysics

Gravitational waves have become a widely used astro-
nomical tool in modern astrophysics in recent years. Pre-
dicted by Albert Einstein in 1916, the existence of grav-
itational waves was not fully proven until 2016 by the
LIGO (Laser Interferometer Gravitational-Wave Obser-
vatory) [3] scientific collaboration. LIGO utilizes laser
interferometers to measure the microscopic deformations
in space-time caused by transient gravitational waves.
Different features of the same sources emit gravitational
waves at different frequencies. Ground-based laser inter-
ferometers have a sensitivity that depends on the specific
sources of noise at a certain frequency. The lower fre-
quency regime is particularly challenging because of the
noise (i.e. ground vibrations and control systems noise,
which are likely to be relevant sources at lower frequen-
cies) that can interfere with the detector instruments. [4]
These types of noise tend to “couple” or leak into the
main signal and thereby producing sources of noise dis-
turbances which then limits the sensitivity of the detec-
tors. Noise coupling is defined as the physical process of
adding some noise sources (such as the ones mentioned
previously) to the gravitational wave strain output.

Nonetheless, there are interesting sources of gravita-
tional waves at those lower frequencies to study. In
particular, the gravitational wave memory from Core-
Collapse Supernovae [2] and pre-merger binary star sig-
nals are found in the lower gravitational wave frequency
regime below 10 Hz.[5] For an event such as a galac-
tic supernova, a fraction of the gravitational wave mem-
ory might be above the amplitude of the noise floor at
frequencies below 10 Hz; therefore, reducing the noise
floor as much as possible would make it easier to extract
those features. As of right now, the only official alL.IGO
calibrated gravitational wave data that is below 10 Hz
is the CAL-DELTAL_EXTERNAL_DQ; however, it does
not exhibit the same precision as the other data that are
available (calibrated above the frequency range). 6]

Generally, contemporary alLIGO noise reduction meth-
ods can focus on reducing the impact of noise sources
that are linearly coupled with auxiliary channels. [7] Ad-
vancements in noise reduction techniques have allowed
physicists to develop a method in which algorithms can
be trained to reduce non-stationary noise couplings by
using auxiliary channels from LIGO’s detectors. Non-
stationary noises tend to vary over a period of time while
noise that is stationary would remain constant. In par-
ticular, Vajente et al.[1] demonstrated how to reduce the
noise contributions to the strain channel (which contains
gravitational wave signals) by also reducing noise that are
coupled non-linearly and non-stationary using an algo-
rithm he created called NonSENS (NON-Stationary Es-
timation of Noise Subtraction) [§]. This algorithm was
then used to successfully reduce the noise produced by
a 60 Hz power line. [1] Therefore, the objective of this
project is to utilize the same algorithm to perform similar
noise reductions within the low frequency regime instead.

II. OBJECTIVE

The main objective of this project will be to mod-
ify and apply the algorithm "NonSENS” for subtracting
non-stationary noise to perform noise reductions in the
lower frequency range, which would be between 1 and 10
Hz. This project will focus on seeing if it is possible to
do this for a lower frequency range by figuring out which
LIGO auxiliary channels can be utilize that will be able
to perform the subtraction to a gravitational wave strain
channel.

III. PROJECT OUTLINE AND APPROACH
A. Linearity and Stationarity

A system in signal processing is a process in which an
output signal is produced as a result of the response to
an input signal. The simplest example of a system is as



follows:
x(t) — system — y(t) (1)

where z(t) is the input signal that goes through a sys-
tem and the y(¢) is the resulting output signal that is
produced. Systems can be categorized as being linear or
non-linear. A system is considered linear if it obeys the
Principle of Superposition. In particular, this principle
holds two mathematical properties: additivity and ho-
mogeneity (illustrated in FIG I and 2} respectively). If
the system does not follow either one of these properties,
then it is considered to be nonlinear.

IF:
X1[——™ System " yl[i]
X[ System > y2[1]
THEN:
XI[t] + x2[t] ———» System F———» y1[t] +y2[t]

FIG. 1. This diagram is illustrating the additivity property
of the superposition principle. In other words, if input z1[t]
produces output y1[t] and input z2[t] produces output y2[t]
(both going through the same system), then x1[t] + 22[t] will
produce y1[t] + y2[n].

1F:
X[t]—>| System > y[i]
THEN:
|6 (1 — System > ky[t]

FIG. 2. This diagram is illustrating the homogeneity property
of the superposition principle. In other words, if k is some
constant, than the input kz[t] will produce output ky[t].

It is important to also understand the distinction
between the characterization of stationary and non-
stationary processes as well. The frequency and statisti-
cal contents in stationary processes do not change over
a period of time whereas the non-stationary process will
vary instead.

B. Linear and Time Invariant System

If the behavior of the system’s inputs and outputs does
not change due to time, then the system is considered to
be time-invariant. A linear time invariant (LTT) system is
valid if the previous statement holds true as well as the
requirements for a linear system. The LTI model also
introduces another property called the shift invariance,
which is illustrated in Fig. This property confirms
that the bahvior of the time-invariant system does not
change when time is shifted.

IF:
{1 — System > y[t]
THEN:
x[t+s]———» System F——— y[t+5s]

FIG. 3. This diagram is illustrating the shift invariance prop-
erty of a system. If the input z[t] is shift by some constant
s, then the output y[t] should also be shift by s. The shift
invariance property only holds true if the system is an LTI
system.

LTI systems can be described by its impulse response.
Below shows another system diagram which is specified
to be an LTT system:

0(t) — LTIsystem —> h(t) (2)

where Dirac Delta function 0(t) is the impulse and h(t)
is the overall output response to the impulse, which are
shifted and scaled. In a physical system, the impulse can
be some added physical object that changes the position
of the system (i.e., a box sliding across the floor after
being hit once by a hammer — the hammer is the impulse
in this case).

Recalling the shift invariance property, the input §(t)
becomes §(t — a) while the output is also shifted by
h(t — a), where a is some constant number. The as-
sumption being made here is that the system is casual.
A system whose present response depends on present and
past values of the inputs is called a causal system, while
a non-casual system depends on future inputs.

Now, using all three properties (additivity, homogene-
ity, and shift invariance), a some input signal x(t) in an
LTI system can be represented as follows:

l‘(t) = kle(t — tl) + klfL‘(t — tl) + ...+ kZ!.C(t — ti) (3)



where the scaling constant k; is called the kernel. The
same equation above can be written in a summation form
as follows:

N

x(t) = Z kix(t —ti) (4)

=0

which in turn can be written in an integral form as fol-
lows:

z(t) = /000 k(T)o(t — T)dr (5)

where §(t — 7) is the input shown by the shift invariance
property and k(7) acts like a constant. This means that
the output y[n] will look like:

y(t) = /000 k(T)h(t — 7)dr (6)

Eqn[6]is known as the convolution integral. The math-
ematical operation of convolution is basically combining
two different signals (the input and the impulse response)
to output a third signal (the output). Convolution de-
picted in this form: (k x h)(¢).

C. Transfer Function

The Laplace Transform is the transformation of a func-
tion from the time domain into the s-domain. It is defined
mathematically by:

F(s) = LIf(1)] = / " f(t)e st @)

Therefore, eqn. [6] can be transformed into the Laplace
domain as shown:

Y(s) = K(s)H(s) (®)

This also demonstrates the Convolution Theorem,
which says that if two functions that are being convo-
luted are Laplace transformed into the s-domain, then
the convolution operation simply becomes multiplication.

Rearranging the equation, the transfer function of the
system is obtained as follows:

bo + bi1s + b232 + ...+ bNSN
ag + a1s 4+ axs? + ... +aysM

Y(s) _

KO =56 =

9)

The roots of the polynomial in the numerator of the
transfer function are zeroes, while the roots of the poly-
nomials in the denominator of the transfer function are
called poles.

D. Non-Stationary Noise Model

Below is the equation that describes the total strain
h(t) with both the linearly and non-linearly correlated
parts of the noise that goes into the detector:

h(t) = y(t) + Hls(t)] + Z ailzi(t)s(t)]  (10)

where the H is the linear coupling, the «; is the non-
linear coupling, the x;(¢) is the slow modulation witness
channel, s(t) are the fast modulation witness channel,
and y(t) is the extraneous noise that is neither linearly
nor non-linearly correlated [9).

The linear coupling er,(¢) can be similarly described in
the convolution integral form shown in eqn. [f] as:

eL(t):H[s(t)]:/Oooh(f)s(t—r)dT (11)

while the non-linear coupling ey, (t) becomes:

N N
ewe(t) = D auless(0)] = Y / ou (it — 7)dr

(12)
where n; is the modulated signal of the combined fast
noise witness signals and the modulation witness signals.
These signals are then coupled into the non-linear trans-
fer function «;.

As shown in Eq[I0] the non-stationary correlated part
requires two different sets of auxiliary channels for fil-
tering. These two auxiliary channels are the fast noise
witness channels and the slow modulation witness chan-
nels, each containing different spectral content at differ-
ent frequency bands. The fast noise witnesses [8] are the
channels that “witness” the faster noise, while the slow
modulation witnesses [§] are the channels that “witness”
the modulation of the noise couplings. For this project,
the fast noise contain content in the 1 to 10 Hz frequency
band while the slow noise contain content below 1 Hz.

As shown in Eq[I0] the assumption can be made that
some of the noise that is witnessed by an auxiliary chan-
nel is coupled to the strain through a linear and sta-
tionary coupling, H. In this case, the step is to find a
fast noise witness channel that have power in the fre-
quency band of interest (i.e., the frequency range desired
for the noise subtraction) by calculating the linear co-
herence between different witness channels and the tar-
get channel. If there is coherence between the channels
in the frequency range of interest, then linear and sta-
tionary subtraction can be implemented. However, in a
realistic scenario, most of the noise coupling is chang-
ing over time, (i.e., non-stationary coupling «;). This is
where it becomes easier to make the distinction between
the fast witness and the modulation witness signals. In



particular, “modulation witness” signals that have time
variations that follow the changing coupling parameters.
This is shown in Eq[I0} where the modulation witnesses
are multiplied by the fast noise signals, thus producing
a time-varying gain of the filters. Therefore, if a modu-
lation signal follows the way the non-stationary coupling
on the signal changes over time, then it is possible to
predict the model for subtraction.

As a starting point, the SUS (suspension), IST (inter-
nal seismic isolation in vacuum chamber), ASC (align-
ment sensing and controls), and SEI (seismic) auxiliary
channels are good possible candidates for the fast noise
witness since they are channels relating to seismic motion
and control systems, which can contain useful signals for
the lower frequency regime. ASC error signals was sug-
gested to use for the slow modulation witness. Originally,
some of the ASC signals have also been used as fast noise
witnesses to successfully subtract noise between 10 and
30 Hz, which makes it a decent starting point. [3]

The target strain channel h(t) is the channel
that the linear and non-linear noise couplings would
be subtracted from.  For this project, the CAL-
DELTAL_EXTERNAL_DQ channel is the best candidate
for the “target” channel. This channel is derived from
control signals that are then modified to produce the cal-
ibrated strain signal that is correct below 10 Hz, which is
the frequency of interest here. The downside to using this
calibrated signal is that is less accurate as oppose to the
GDS-CALIB_STRAIN channel, which is the main prod-
uct of the calibration pipeline and is generally used for
all data analysis. However, the GDS-CALIB_STRAIN
channel is only useful for subtraction above 10 Hz since
the strain is not corrected below that range. At this time,
the CAL-DELTAL_EXTERNAL_DQ channel is the only
calibrated strain that is available below 10 Hz.

E. Second Order Stages

From eqn[I0} the non-stationary coupling part is as
follows:

N
hno(t) = / ;i (T)ni(t — 7)dr (13)
i=1

This reflects eqn. [6] and therefore it can be inferred that
«; is the kernel. The relationship between the kernel and
the transfer function was shown in eqn. [0} Transforming
a; back into the s-domain as «;(s), the transfer function
can be expanded into:

(s) bo+bis +bos® + ...+ bysN SN bt
ai\s) = = -
ag + a15 + ags? + ... + apsM Zij\io

a; s’
(14)
where (M > N) since this is a casual system. Here, the
i roots of b are the zeroes of «;(s) and the 7 roots of a
are the poles of «;(s). Therefore we can write this as:

gy bo (= 2)(s = 20). (s — z)
;(s) aop (s —p1)(s —p2)....(s — i) (15)

where 21, 29,....,2; are the zeroes (roots of b) and
P1,D2, ..., D; are the poles (roots of a). Then, by decom-
posing it:

ai(s) =t 1 ry r;
S —p1 S — P2 S —DPi
Mo
a;(s) :C+Z : (16)
im O P

where r; is the complex residual and p; is the complex
pole. In order to make the time-domain response of the
transfer function real, there are two possible conditions:
a) r; and p; must have conjugate pairs and b) r; and p;
be real. Therefore, those two conditions are shown in the
equation below:

+3 L

~ 5 — Pj
J P

O‘(S):C'i'ZLii + i ]

; pi  5—D;

where the second term denotes the complex term and the
third term is the real term. The following set of equations
is simply showing how the complex term gets expanded
out:

)= 3 [E L)

(s —pi)(s —pi)*

%

Ceompin(s) = 3 {( i) brils ‘p”)] (18)

(s* = 2[pis] +p})

and then for the real term:

r T T
areal(s) = ! + 2 +
§—D1 s —P2 S —DPi
_ ri(s —p2) +7r2(5 — p1)
areal(s) - — —
(s —p1)(s —p2)
trem(s) = (r1 4 r2)s + ripa — rap1 (19)

52 — s(p2 — p1) + P1p2

Eqns 18 and [I9) both contain a second order polynomial
in their denominator, which is called the second order
stage.



F. NonSENS Code

The NonSENS (NON-Stationary Estimation of Noise
Subtraction) algorithm is written in Python scripts. The
main “nonsens” interface consists of several scripts which
contain the codes to perform each step of the subtraction.
Fig 0] and [6] shows the display of the algorithm’s output
on an integrated terminal. The iPython command shell is
utilized as the interpreter on this terminal prompt since
the algorithm is written in Python.

The purpose of utilizing the NonSENS algorithm is to
find the optimal parameters that will reduce the max-
imum amount of noise from the target strain as possi-
ble. In order to implement a linear and stationary sub-
traction using the algorithm, only the noise witnesses
should be considered (meaning that the list of modu-
lation witnesses should remain empty). However, the
non-stationary noise couplings ought to be considered if
one wishes to perform the most optimal noise subtrac-
tion, which is what the algorithm takes into account.
As shown in eqn[l0] the z;(¢) (slow modulation noise)
and s(t) (fast noise) are multiplied together. Each of the
modulated signal is then coupled with the non-stationary
«; transfer function, which results in having all of those
transfer functions summed together.

x1(t) 2%8

x2(t) % = X3 (t)

x3(t) x4(t)

x4(1) xlgg . slg%

.Nuise X1 *Salc Total
e | UG | modsed
signals Signals

x2(t) » 51()
x2(t) * s5(t)
x4(t) * s5()

FIG. 4. This diagram is an illustration example of how the
witness signals are combined in the algorithm in order to form
the modulated signals. Essentially, the algorithm takes each
noise witness x;(t) and multiplies it with each modulation
witness s;(¢). The total modulated signals in the end are
equal to i+ (j *4), where ¢ and j are simply the indices of the
witness signals. Each of the modulated signals will then go
through a transfer function «; before being summed together.

Filters will then be applied, as needed. Finally, the
sum of all of the filtered signals are then to be subtracted
from the original target signal; hence the subtraction is
performed!

13| %run -i modified sub_asc.py
Reading target channel (GPS 1242441180 - 1242442388) H1:CAL-DELTAL_EXTERNAL_DQ
using gwpy
Reading noise witness channels (GPS 1242441180 - 1242442380)
H1:ASC-DSOFT_P_OUT_DQ
H1:ASC-DSOFT_P_SM_DQ
H1:ASC-DSOFT_P_IN1_DQ
H1:ASC-DHARD_P_SM |

H1:ASC-X TR B_PIT OUT DQ
H1:ASC-X TR B YAW OUT DQ
H1:ASC-X TR A PIT OUT DQ
H1:ASC-X TR_A YAW OUT DQ
H1:SUS-SRM M3 MASTER OUT LL DQ
H1:SUS-SRM M3 MASTER OUT UL DQ
H1:SUS-SRM M3 MASTER OUT UR DQ
using gwpy
Reading modulation witness channels (GPS 1242441180 - 1242442380)

using gwpy
Preprocessing. ..
Normalizing signals to zero mean and unity std
Resampling all witness signals to 512 Hz
Build modulated signals
Applying preconditioning filter
Computing cross spectral density matrices...
Detecting glitchy sepments
119 pood sepments / © bad segments
Computing FFTs
Averaging FFTs to get CSDs
Training model. ..
1.833274762628
1.985557548165
1.137@36428796
step cost = ©.944441884869
step cost = 8.965317482943

step cost
step cost
step cost

FIG. 5. This shows the first half of the algorithm’s output on
the iPython interpreter. At the very top of the picture is the
“%run -1” which is the command to run a python script.

9400 cost = 0.885637329619
9500 cost = 0.788132887089
9600 cost = @.786126953243
9708 cost = @.784972189532
step = 9800 cost = @.784240923142
step = 9900 cost = @.783878695499
Preprocessing. . .
Normalizing signals to zero mean and unity std

step
step
step
step

Using pre-computed normalizations
Resampling all witness signals to 512 Hz
Build modulated signals

Applying preconditioning filter
Time domain subtraction (method = serial)

applying upsampling filter...

applying antialias bandstop filter...

Saving to file /home/yuka.lin/test codes/nonsens-master/examples/Linear/NonS
ENS_test/plots//asc_modell subtracted timedomain H 1242441130 1200 2021 @7 24 17
h3em53s.png

FIG. 6. This is the second half of the algorithm’s output,
continuation from Fig.

In order to perform a subtraction utilizing the algo-
rithm, a Python script that is run on the terminal which
contains all of the user’s inputted parameters for the par-
ticular subtraction. The following parameters are utilized
and adjusted as necessary:

Target channel: is the main strain channel. It is up
to the user to input the specified channel’s information
regarding GPS time, interferometer site, and how the
channel would be read into the code.

Noise Witness Channels: are the fast noise witness
channels that will be used to subtract with the strain.

Modulation Witness Channels: are the slow noise wit-
ness channels that will be used to subtract with the
strain. This list should be kept empty in order to perform
only a linear subtraction. This was shown in the second



term of Eqn. where H|[s(t)] is the stationary noise
coupled with the fast noise witness channel. (However,
as a note, the equation model only considers one fast
noise witness channel while the algorithm can compute
multiple channels at a time.)

LIGO auxiliary channels are utilized as the channel pa-
rameters. These channels monitor the physical behavior
of LIGO detectors and are collected as data in the form
of a time series.[4]

Preconditioning Filter: applying preconditioning fil-
ter (need to add more to this, but do not understand
very well...is this filter being applied before or after the
noise and modulation witnesses are normalized and com-

bined?)

fs: is the sampling frequency, which is the amount of
samples in each second (1/time).

n_FFT: is the segment size of the FFT’s (Fast Fourier
Transform). The FFT computes the DFT (Discrete
Fourier Transform) using an algorithm as a opposed to
computing by hand (hence the name “fast”).

Glitches: are short-duration noise transient signals
that can appear as an instrumental artifact in the de-
tectors. [4] The frequency band range and the thresh-
old parameters can be adjusted to detect possible the
glitches. If glitches are found in any segments, those will
be discarded from the final calculation.

fband: frequency range wanted to minimize the resid-
ual noise within that band range.

The following parameters are specified for the Adam
(Adaptive Moment Estimation) algorithm [10] in order
to minimize the cost function (see Fig: learning_rate,
decay_steps, decay_rate, and nsteps.

The algorithm outputs the following plots:

1. Cost Function Plot

Best: 0.974924
1.000

0.995
0.990

0.985
k7]

Co:

0.980

0.975

0970

2000 4000 6000 8000
lterations

FIG. 7. A cost function is used to estimate how poorly the
model will perform based on the relationship between the
independant and dependant variables of a model (i.e. the
smaller the cost function is, the better the estimate and vice-
versa). Using this logic, it can be concluded for this algorithm
the following conditions: 1) if the minimum of the cost func-
tion is equal to 1, no noise subtraction is happening, 2) if the
minimum of the cost function is greater than 1, noise is being
added to the target, 3) if the minimum of the cost function
is less than 1, noise is subtracted from the target. In this
case, the cost function is the calculated average of the ra-
tio of the subtracted power spectral densities divided by the
original power spectral density in that frequency range. The
minimum of the cost function is indicated by the red line.
The exact value of this minimum is indicated by the plot title
“Best: 0974924” for this particular model.



2. Subtraction Plot

T p——— = Original signal
3 = Non-stationary subtraction

P

U
102 B4 W
%51»
EZS*
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FIG. 8. This plot depicts the amplitude spectral density

(ASD) of the original target signal (which in this case is the
“DCS-CALIB_STRAIN_CLEAN_SUB60HZ_C01” strain) and
the subtracted version of that same target signal in order
to show the amount of modification that was done in this
subtraction. The ASD is calculated as the square root of
the power spectral density (PSD). The PSD shows an esti-
mation of how the power is distributed as a function of fre-
quency. This estimation is calculated using Welch’s method.
Welch’s method essentially breaks a signal into segments
called “time windows” in order to take the FFT of each piece
and then averaging them all together to create the PSD. This
tends to help with calculations of nonstationary-like signals
and make the PSD’s smoother as oppose to simply just taking
a single FFT of a full non-stationary signal. The ratio plot
at the bottom is graphed as the original target signal divided
by the subtracted target signal — therefore, if the ratio is
shown to be above one as is depicted in this example, then it
is further indication that a subtraction is being performed as
opposed to an addition of noise. In the example plot above,
it is shown that the noise was reduced by a factor of a little
over 2.5 between the 15-18 Hz frequency range.

3. Contribution Plot
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FIG. 9. This plot shows the amplitude spectral density (ASD)
of the original target channel and the noise witness channels.
This helps to compare whether or not the target and the wit-
ness channels have similar power content at the frequency
ranges of interest.

4. Alpha Plot

FIG. 10. The eight plots shown are the transfer functions of
the a; coefficients that were created from each of the modu-
lated signals. The orange lines are the phase values and the
blue lines are the magnitude values of the transfer functions.

5.  Time-Domain Plot

= Original signal
= Non-stationary subtraction

ASD [ Hz1?]

Ratio

FIG. 11. This is the same plot as Fig. but using a time-
domain subtraction instead.

6. Spectrogram Plots

‘‘‘‘‘

FIG. 12. A spectrogram shows an estimate of the PSD on
shorter intervals on a frequency vs time scale in order to see
how the PSD changes with time.



FIG. 13. The same spectrogram as Fig[T2] but whitened.
(Whitening is essentially normalizing the data to make it ap-
pear more uniform.)

A more in-depth summary of the algorithm code can be
found at this website: https://wiki.ligo.org/CSWG/
Algorithm.

The algorithm Python code can be found here:
https://git.ligo.org/gabriele-vajente/nonsens/
-/tree/master.[§]

G. Approach

The first step in the project would be to subtract the
noise from the ”target” strain that is linearly correlated
with the fast noise witness auxiliary channels. Since there
are a number of active LIGO channels to choose from,
the practical strategy would be to calculate whether any
linear coherence exists in the lower frequency regime be-
tween the channels in order to establish if linear sub-
traction would be viable. If no coherence exists between
channels, than there is no linear subtraction that can be
performed. In order to utilize the algorithm to perform
a linear subtraction, simply keep the list of “modulation
witness” empty so that the algorithm considers only the
linear subtraction part.

The next step then would be to remove the part of the
noise that is non-linearly correlated. However, finding
the linear coherence between the channels is not a set
determination of whether or not a non-linear subtraction
would be possible. At this time, though, it would serve
as a starting point to select certain set of channels that
might have the possibility of subtracting the non-linear
noise from.

For more information and details regarding this
project, please see this link which documents more
information about it: https://wiki.ligo.org/CSWG/
NonLinearNoiseSub_LF.

Specific daily logs are kept at this link: https://wiki.
ligo.org/CSWG/WeeklySummaries,

IV. PROGRESS
A. NonSENS Algorithm

The earlier part of the first week was dedicated to un-
derstanding how to utilize the NonSENS algorithm code.
The existing example code for the subtraction of the ASC
arms was used as the starting template for this project.
This is a good starting point because some of the ASC
signals were previously used as a fast witness to subtract
noise between 10 and 30 Hz, which is the lowest range
that the subtraction algorithm had performed up to date.

B. Spectrograms

Another important focus in the first week was
also producing the spectrogram of the HI1:CAL-
DELTAL_EXTERNAL_DQ strain. The purpose of mak-
ing the spectrograms was to visually observe if there were
stationary or non-stationary behavior in each of the spec-
trum bands that are contained within the strain. If there
are some prominent stationary behavior found, then next
approach would be to find channels that are linearly co-
herent at the general frequency range of this spectrum.
Linear coherence describes the correlation between the
two stationary signals in the frequency domain. This
was the first step in being able to narrow down specific
auxiliary channels to utilize that will be able to perform
a noise subtraction for this lower frequency range.

107 5
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10-12 {

PSD (dB/Hz)

10-1% |
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FIG. 14. This plot shows the power spectral density (PSD)
versus the frequency of the strain signal. As shown in this

plot, the PSD peaks occur at the close to the same frequencies
as each of peaks in FIG. below.
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https://git.ligo.org/gabriele-vajente/nonsens/-/tree/master
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https://wiki.ligo.org/CSWG/NonLinearNoiseSub_LF
https://wiki.ligo.org/CSWG/NonLinearNoiseSub_LF
https://wiki.ligo.org/CSWG/WeeklySummaries
https://wiki.ligo.org/CSWG/WeeklySummaries
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FIG. 15. In observing the spectrogram of the H1:CAL-
DELTAL_EXTERNAL_DQ strain produced, there appears to
be prominent peaks near in the ~ 2.1 — 2.4 Hz, ~ 3.5 — 3.8
Hz, and ~ 9.5 — 9.9 Hz frequency ranges. The following fig-
ures display the same spectrograms that are zoomed in on
these particular frequency ranges as shown in the graphs be-
low these graphs which can be done by adjusting the FFT
lengths (increase gets better frequency resolution) and the
stride (increase gets better time resolution).

1. Spectrogram 2.1 - 2.4 Hz
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FIG. 16. This part of the spectrogram shows that there is
a peak between 2.1-2.4 Hz. This particular peak is display-
ing a lot of non-stationary behavior, though there is some
stationary as well.

2. Spectrogram 3.5 - 3.8 Hz

Frequency [Hz]

2 4 6 8 10 12 14 16 18 2
Time [minutes] from 2019-05-21 02:32:00 UTC (1242441138.0)

FIG. 17. The most prominent spectral feature appears on
this plot between 3.5-3.8 Hz. There appears to be a mostly
stationary behavior on this spectrum peak.

8. Spectrogram 9.5 - 9.9 Hz
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FIG. 18. This peak appears in the 9.5 - 9.9 range on the
spectrogram. The non-stationary behavior is more apparent
than the other peaks.

C. Picking Channels

In order to aid even further in narrowing down a list
of possible auxiliary channels to use as a fast noise wit-
ness, an algorithm called Bruco (Brute Force Coher-
ence) was utilized to create a list of specific chan-
nels that have some linear coherence with the H1:CAL-
DELTAL_EXTERNAL_DQ strain. More specifically,
this algorithm is able to output the top twenty channels
that have the highest coherence with the strain relevant
at each frequency. The following link is the most updated
list that was generated by Dr. Gabriele Vajente to utilize
for this project: https://ldas-jobs.ligo.caltech.
edu/~gabriele.vajente/bruco_1f_2021_06_22/.

With the list of top linear coherences, it was easier to
pick the best coherent channels in a systematic manner.
Each of the channels that were picked at the correspond-
ing frequency ranges listed in Tables I and II (next page)
had the most relevance to the overall range instead of just
at an individual frequency. (These lists will be expanded
as more channels are investigated.)

D. Linear Subtraction

A series of linear subtractions was performed based
on which channels had the best coherence with the tar-
get channel. The channels that was shown to have the
largest subtraction were combined into a single list of
noise witnesses and a full subtraction was performed for
that.


https://ldas-jobs.ligo.caltech.edu/~gabriele.vajente/bruco_lf_2021_06_22/
https://ldas-jobs.ligo.caltech.edu/~gabriele.vajente/bruco_lf_2021_06_22/
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Frequencies: (Hz) 2.00(2.03(2.06|2.09|2.12|2.16(2.19|2.22|2.25|2.28|2.31|2.34|2.38|2.41
PEM-EX_ADC_0-19-OUT_DQ - - 10.65[/0.49]0.44]0.43]0.51|0.40| - [0.22| - - 10.32]0.32
ASC-X_TR-A_-YAW_OUT_DQ - 10.32]0.31/0.30|0.33]0.25| - ]0.22|0.24|0.23|0.28| - - -
ASC-Y_TR_.B.NSUM_OUT_DQ - - 10.21]0.30| - - 10.27]0.25/0.280.29(0.25| - - -

ASC-DSOFT_P_.OUT_DQ - - - - - 10.26]/0.30]0.26]0.24|0.20|0.27]0.24 | - -
ASC-DSOFT_P_SM_DQ - - - - - 10.26]/0.30]0.26]0.24]0.20|0.27]0.24 | - -
ASC-DHARD_P_OUT_DQ - - - - 10.2810.33]{0.36{0.25| - - - 10.25]0.42|0.50
ASC-DHARD_P_SM_DQ - - - - 10.2810.33]{0.36{0.25| - - - 10.25]0.42|0.50
SUS-ETMX_R0O_-DAMP_Y_IN1.DQ| - - 10.30]0.31(0.31|0.25[0.24|0.31]0.25|0.19|0.27 | - - -
SUS-ITMX_M0_-DAMP_Y_IN1.DQ | - - - 10.23]0.26(0.25| - ]0.33]|0.32{0.26|0.40{0.30| - -
SUS-ETMX_MO0_-DAMP_Y_IN1.DQ| - - 10.28(0.26| - - 10.22]0.30|0.280.27(0.37|0.24 | - -

TABLE I: Top channels with the best coherence with H1:CAL-DELTAL_EXTERNAL_DQ at 2.0-2.4 Hz. Each of
the coherence (from a scale from 0 to 1) was calculated for each of the channels at different frequencies. The closer
to the value is to 1, the higher the coherence between the two channels.

3.50|3.53
0.65
0.66
0.66
0.68

0.68

3.56
0.57
0.58
0.59
0.61
0.61

3.59
0.61 | 0.59
0.61 | 0.58
0.61| -
0.63 | 0.60
0.63 | 0.60

3.62|3.66
0.50

0.50

3.69|3.72
0.35|0.27
0.34| -
0.50| 0- |0.27
0.4910.34
0.49| -

3.75
0.40

3.78
0.33
0.4010.32|0.31
0.40]0.330.30
0.27] - - -
0.27] - - -

3.81
0.32

Frequencies: (Hz)
LSC-SRCL_IN1.DQ 0.65
SUS-SRM_M1_NOISEMON_RT_OUT_DQ| 0.65
SUS-SRM_M1_NOISEMON_LF_OUT_DQ| -
SUS-SRM_-M3_MASTER_OUT_LL_DQ |0.66
SUS-SRM_M3_NOISEMON_LL_OUT_DQ | 0.66

TABLE II: Top channels with the best coherence with H1:CAL-DELTAL_EXTERNAL_DQ at 3.5-3.8 Hz.

Best Noise Witness Channels:
ASC-DSOFT_P_IN1.DQ
ASC-DHARD_P_IN1.DQ
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Non-stationary subtraction JAY
f

| JN—
10'5;\\ /-/ \\',W \\ﬁ
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ASC-X_TR_A_YAW_OUT_DQ | - U |
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FIG. 19. This plot is the best linear subtraction, using the list
of noise witness channels that are given Table[[VD] The ratio
plot on the bottom gives a clearer indication of the amount of
noise that is being subtracted (any time the ratio goes above
1.0 indicates subtraction while any time the ratio goes below
1.0 indicates addition instead).

TABLE III: A list of the best channels for linear subtrac-
tion with H1:CAL-DELTAL_EXTERNAL_DQ.

In order to be able to be able to compare the subtrac-
tions of different

ness channels that are able to remove the linear coupling
from the target as much as possible. Then, keeping this
same list of noise witnesses, the second step is to attempt
to remove some non-linear couplings by picking out and
utilizing modulation witnesses. The idea is to append to

V. CHALLENGES

The main and overarching challenge of the project will

be picking the channels that are able to perform the non-
linear subtraction from the target channel. There is an
approach, as mentioned previously, to picking channels
for doing a linear or stationary subtraction. Utilizing the
algorithm, the first step is find a list full of noise wit-

the list of useful channels to the list in order to remove
as much coupling as possible from the target channel.
However, there is not really a sound process to picking
auxiliary channels for the non-stationary case. At this
moment in time, the basic approach would be the sys-
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FIG. 20. This plot is the time domain version of the plot in

Fig. [19]

tematic way of guessing and checking through numerous
channels. Picking out the linearly correlated channels is
also the best approach for constricting the possible rele-
vant channels.

A. Project Plan

The following is a list of the plans expected to be done
for the project. The “Expected date to complete” were
the original timeline goals set prior to beginning this sum-
mer project.

1. Run the existing NonSENS algorithm example code
on a terminal as a test. Then, after being able to
successfully run the code, the next step would be to
study the algorithm thoroughly in order to gain a
more clearer understanding of the operations that
is being performed on this non-linear subtraction.
This will aid in understanding and adjusting the
code as needed to perform the subtraction on a
lower frequency regime.

e Status: Completed

2. Plot spectrogram of the target channel CAL-
DELTAL_EXTERNAL_DQ in order to observe any
stationary and non-stationary peaks.

e Status: Completed

3. Begin to pick a list of possible fast noise wit-
ness channels. The webpage ”Top 20 Coherences
of CAL-DELTAL_EXTERNAL_DQ With Auxil-
iary Channels” will be used to find channels with
the best coherence with the target.

e Status: In-Progress
e Goal to complete by: end of eighth week (Au-
gust 6)

4. Perform linear subtractions with the possible chan-
nels as a start. This will also be a way to narrow

[1]

2]

3]

[4]

8]

[9]
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down which channels might be useful in the non-
linear subtraction.
e Status: In-Progress

e Goal to complete by: end of seventh week or
eighth week (August 6)

. Once possible channels found and listed, perform

non-linear subtraction to verify. It would be most
ideal if able to produce this data for a longer ob-
serving run (possibly for all of O3).

e Status: Not started
e Goal to be completed by: end of program
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