

Inpainting for glitch mitigation in BILBY

Viviana A. Cáceres Barbosa

Derek Davis

August 15, 2022

• Glitches create a bias in parameter estimation

Posterior distributions obtained for chirp mass and distance for a BBH signal at different glitch time offsets.

• Existing methods are complex and require a large amount of time

• Inpainting filter F is designed to satisfy

$$u^{(\alpha)T} C^{-1} F d = 0$$

 \rightarrow overwhitened, inpainted data is zero inside the hole

• Samples inside hole will not contribute to noise-weighted inner products

$$\mathcal{L}(d_{inp}|\theta) \propto \exp\left[-\frac{1}{2}(d_{inp}|d_{inp}) + (d_{inp}|h_{inp}) - \frac{1}{2}(h_{inp}|h_{inp})\right]$$

Zackay+ 2021 Kwok+ 2022

Methods to obtain inpainted data

1. Calculate F and apply it to data and waveforms

$$F = 1 - A M^{-1} A^T C^{-1}$$

Example:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ f & a \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{bmatrix}$$

Methods to obtain inpainted data

1. Calculate F and apply it to data and waveforms

Methods to obtain inpainted data

- 2. Solve a Toeplitz system
 - a. Inpainting removes the projection of the data into overwhitened data space, inside the hole:

$$Fd = d - d_{proj}$$

b. Solve the Toeplitz system for ${\rm d}_{\rm proj}$ in the hole

$$C^{-1}d_{proj} = C^{-1}d$$

Comparing the methods

F method

Pros:

• Can inpaint more than one segment without increasing cost

Cons:

- Slower $O(N_d^2)$
- Can take up a large amount of memory

Toeplitz method

Pros:

- Faster $O(N_h^2)$
- Low memory usage

Cons:

 Loses efficiency when used for more than one segment

Testing correct function performance

F method

- Using 4s of data, 4096 Hz
- Single-likelihood evaluation times increased significantly
- F Method: $O(N_d^2)$
- Toeplitz Method: $O(N_h^2)$

Inpainted injection PE runs

- Full analyses
 - Standard (no inpainting)
 - \circ Inpainted 0.1 s before, 0.05 s window
 - Inpainted 0.25 s before, 0.2 s window
- Short analyses (chirp mass, mass ratio, phase, geocentric time)
 - Changing inpaint center in relation to merger time
 - Changing inpaint window

PE for injection with inpainting

• Injected BBH into Gaussian noise scaled to the PSD of LIGO detectors

PE results with inpainted data

Inpainted 0.1s before $t_{\rm c}$ with a 0.05s window

PE results with inpainted data

Inpainted 0.25s before $t_{\rm c}$ with a 0.2s window

PE results with inpainted data

Posteriors for log-likelihood

Changing center time in relation to t_c

- Inpainting very close to signal removes important information
- Plots shown were produced with many fixed parameters

Changing window length

- Removing information via inpainting increases uncertainty
- Inpainting entire signal should return prior

Reweighting

- Run a standard analysis (only data inpainted) and reweight results with an inpainted analysis
- Take roughly the same amount of time as standard analysis
- Cannot be done if too much of the signal is inpainted

ρ

q

Next Steps

- Getting ready to add to Bilby
- Prepare code for review and use in O4
- Testing a large number of injections
- Testing on data with injected glitches
- Planning paper

Questions?

Thank you for your attention!

Additional Figures

Recovered parameters

window)

(inpainted 0.1 s before with 0.05s

	Injected	Standard	Inpainted
\mathcal{M}/M_{\odot}	15.53	$15.63_{-0.11}^{+0.12}$	$15.56^{+0.15}_{-0.14}$
q	0.52	$0.60\substack{+0.16\\-0.12}$	$0.55_{-0.09}^{+0.11}$
a_1	0.65	$0.81^{+0.11}_{-0.15}$	$0.90\substack{+0.06\\-0.11}$
a_2	0.65	$0.55_{-0.24}^{+0.24}$	$0.34\substack{+0.26\\-0.23}$
ϕ_{12}	0.0	$3.25^{+2.69}_{-2.89}$	$3.07^{+2.88}_{-2.78}$
ϕ_{JL}	0.0	$3.74_{-0.47}^{+0.45}$	$3.16^{+2.15}_{-2.11}$
d_L	100	$104.41^{+15.47}_{-13.49}$	$104.49^{+17.54}_{-14.42}$
δ	1.00	$-0.93\substack{+0.08\\-0.07}$	$-0.93^{+1.01}_{-0.08}$
α	2.00	$4.98^{+0.18}_{-0.25}$	$4.89_{-0.46}^{+0.29}$
θ_{JN}	1.65	$1.45_{-0.07}^{+0.07}$	$1.48^{+0.09}_{-0.10}$
ψ	1.50	$1.66^{+0.12}_{-1.49}$	$0.28^{+2.10}_{-0.18}$
ϕ	2.00	$2.87^{+2.48}_{-2.04}$	$3.10^{+2.22}_{-2.15}$
t_{geo}	2.5	$2.48^{+0.00}_{-0.00}$	$2.48^{+0.02}_{-0.00}$
θ_1	0.0	$0.26\substack{+0.13\\-0.11}$	$0.24_{-0.10}^{+0.14}$
θ_2	0.0	$0.67^{+0.37}_{-0.31}$	$1.07\substack{+0.65\\-0.57}$