DCC: T2200159

GO

Glitch mitigation methods for parameter estimation of compact binary coalescences

Viviana A. Cáceres Barbosa

Mentor: Derek Davis

Caltech LIGO SURF

August 18, 2022

Motivation

• Parameter estimation (PE) of gravitational wave sources uses Bayes' Theorem:

$$p(\theta|d) = \frac{\mathcal{L}(d|\theta)\pi(\theta)}{z(d)}$$

• PE pipelines assume that noise is stationary and Gaussian, allowing us to use:

$$\mathcal{L}(d|\theta) \propto \exp\left[-\frac{1}{2}(d|d) + (d|h) - \frac{1}{2}(h|h)\right]$$

This is the probability of d given θ
This is a noise-weighted inner product

Motivation

- Glitches invalidate our assumption of stationary Gaussian noise
- Existing glitch mitigation methods are complex and require a large amount of time
- Proposed method: inpainting

Can inpainting effectively prevent specific

regions of data (holes) from contributing to

the likelihoods in parameter estimation?

Zackay+ 2021 Kwok+ 2022

Background

• Inpainting is a filter F designed so that

$$A^T C^{-1} F d = 0_{N_d \times 1}$$

Inside the hole, the overwhitened inpainted data is zeroed.

- Samples inside hole will not contribute to noise-weighted inner products
- We must inpaint the data and the waveforms

$$\mathcal{L}(d_{inp}|\theta) \propto \exp\left[-\frac{1}{2}(d_{inp}|d_{inp}) + (d_{inp}|h_{inp}) - \frac{1}{2}(h_{inp}|h_{inp})\right]$$

Inpainting data: F Method

- Calculate F matrix and perform matrix multiplication with data and waveforms
 - F is calculated as a pre-processing step
 - Matrix multiplication occurs within analysis
- Matrix multiplication is of $O(N_d^2)$

Inpainting data: Toeplitz method

• Calculate the difference between the original data and the inpainted data

$$Fd = d - d_{proj}$$
$$C^{-1}d_{proj} = C^{-1}d$$

- C⁻¹ is Toeplitz (diagonally constant)
- Toeplitz system can be solved in $O(N_h^2)$
- Cannot be used when inpainting more than one segment

Increase in runtime

- 4s of data, 4096 Hz
- Single-likelihood evaluation times increased significantly
- F Method: $O(N_d^2)$
- Toeplitz Method: $O(N_h^2)$

Inpainted injection

Inpainted injection

~

Changing center time in relation to t_c

- Most important information is near the merger time
- Fixing parameters may have affected our results here

Changing window length

• The more information we remove, the more our posterior should look like our prior.

Reweighting: A faster alternative

- Procedure:
 - Run analysis only inpainting data

$$\exp\left[-\frac{1}{2}(d_{inp}|d_{inp}) + (d_{inp}|h_{\aleph p}) - \frac{1}{2}(h_{i\aleph p}|h_{i\aleph p})\right]$$

- Reweight results by inpainting both data and waveform
- Take roughly the same amount of time as standard analysis
- Cannot be done if too much of the signal is inpainted

Reweighting: A faster alternative

M_{chirp}

q

13

Conclusions

- Inpainting can prevent holes from contributing to the likelihood without biasing results
- Run time can increase significantly, depending on run configurations, but this can be improved
- Future work:
 - Prepare code for review and use in Bilby and in O4
 - Improve efficiency of our algorithms
 - Large number of injections
 - Injections in data that contains glitches

Acknowledgements

Derek Davis

LIGO Lab at Caltech

LIGO Summer Undergraduate Research Fellowship

Student-Faculty Programs

National Science Foundation

Victor M. Blanco Fellowship

Caltech

References

- Abbott, B. P., Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., ... & Calloni, E. (2020). A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 37(5), 055002.
- Davis, D., & Walker, M. (2022). Detector Characterization and Mitigation of Noise in Ground-Based Gravitational-Wave Interferometers. Galaxies, 10(1), 12. https://doi.org/10.3390/galaxies10010012
- Kwok, J. Y., Lo, R. K., Weinstein, A. J., & Li, T. G. (2021). Investigation on the Effects of Non-Gaussian Noise Transients and Their Mitigations on Gravitational-Wave Tests of General Relativity. *arXiv preprint arXiv*:2109.07642.
- Powell, J. (2018). Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches. Classical and Quantum Gravity, 35(15), 155017.
- Zackay, B., Venumadhav, T., Roulet, J., Dai, L., & Zaldarriaga, M. (2021). Detecting gravitational waves in data with non-stationary and non-Gaussian noise. *Physical Review D*, 104(6), 063034.

Questions?

Thank you for listening!

Checking that the functions work

F method

Toeplitz method

F Matrix Example

$$F = 1 - A M^{-1} A^T C^{-1}$$

 $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ f & a \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{bmatrix}$

More on the Toeplitz method

$$\begin{aligned} A^T C^{-1} F d &= 0_{[N_d \times 1]} \\ F d &= d - d_{proj} \\ A^T C^{-1} (d - d_{proj}) &= 0_{[N_d \times 1]} \\ A^T C^{-1} d_{proj} &= A^T C^{-1} d \end{aligned}$$

Taking the values outside of the hole to be 0,

$$A^T C^{-1} A A^T d_{proj} = A^T C^{-1} d$$

Likelihoods calculated

All recovered parameters

	Injected	Standard	Inpainted
\mathcal{M}/M_{\odot}	15.53	$15.63^{+0.12}_{-0.11}$	$15.56\substack{+0.15\\-0.14}$
q	0.52	$0.60\substack{+0.16\\-0.12}$	$0.55_{-0.09}^{+0.11}$
a_1	0.65	$0.81^{+0.11}_{-0.15}$	$0.90^{+0.06}_{-0.11}$
a_2	0.65	$0.55_{-0.24}^{+0.24}$	$0.34_{-0.23}^{+0.26}$
ϕ_{12}	0.0	$3.25^{+2.69}_{-2.89}$	$3.07^{+2.88}_{-2.78}$
ϕ_{JL}	0.0	$3.74_{-0.47}^{+0.45}$	$3.16^{+2.15}_{-2.11}$
d_L	100	$104.41^{+15.47}_{-13.49}$	$104.49^{+17.54}_{-14.42}$
δ	1.00	$-0.93\substack{+0.08\\-0.07}$	$-0.93^{+1.01}_{-0.08}$
α	2.00	$4.98^{+0.18}_{-0.25}$	$4.89_{-0.46}^{+0.29}$
$ heta_{JN}$	1.65	$1.45_{-0.07}^{+0.07}$	$1.48^{+0.09}_{-0.10}$
ψ	1.50	$1.66^{+0.12}_{-1.49}$	$0.28^{+2.10}_{-0.18}$
ϕ	2.00	$2.87^{+2.48}_{-2.04}$	$3.10^{+2.22}_{-2.15}$
t_{geo}	2.5	$2.48^{+0.00}_{-0.00}$	$2.48^{+0.02}_{-0.00}$
θ_1	0.0	$0.26\substack{+0.13\\-0.11}$	$0.24_{-0.10}^{+0.14}$
$ heta_2$	0.0	$0.67\substack{+0.37 \\ -0.31}$	$1.07\substack{+0.65 \\ -0.57}$

Noise-Weighted Inner Product

 $(a|b) \equiv \sum_{j=0}^{\frac{N}{2}-1} 4\text{Re}\left(\frac{\tilde{a}_{j}^{*}b_{j}}{S_{n}(f_{j})}\Delta f\right)$