
Mitigating the effect of glitches on gravitational-wave parameter estimation using
an inpainting filter

Viviana A. Cáceres Barbosa
Physics Department, University of Puerto Rico at Mayagüez
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Recovering accurate distributions for the source parameters of gravitational-wave signals is essen-
tial to confirm current models of general relativity and understand astrophysical properties of the
universe. Glitches in gravitational-wave strain data may cause a bias in parameter estimation anal-
yses that use Bayesian inference. We implement inpainting to address this problem in Bilby, one
of various parameter estimation pipelines used for gravitational-wave analyses. Using two differ-
ent methods to obtain inpainted data, we study how each process increases likelihood evaluation
times. We also inject a binary black hole signal and study how inpainting with different configu-
rations affects Bilby’s ability to recover accurate posterior distributions. The results suggest that
our implementation exhibits the expected behavior of reducing the calculated likelihood without
introducing a bias, and can now be added onto Bilby for more rigorous testing.

I. INTRODUCTION

Raw strain data recorded by gravitational-wave
(GW) detectors such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) is typically
dominated by noise coming from a variety of different
sources. Although many of these sources are known
and well-modeled, there are often short noise bursts,
known as glitches, of unknown origin that impact the
sensitivity of the data analysis softwares used by the
LIGO-Virgo-KAGRA collective (LVK) [1]. Much of
LVK efforts are dedicated to mitigating the effect of
glitches in GW signal searches and parameter estima-
tion (PE) analyses.
Bilby is one of various PE pipelines used by the LVK

[2]. Like most PE pipelines, it uses Bayesian inference
to produce posteriors, which are probability distribu-
tions of the GW source parameters. These are com-
puted using Bayes’ theorem:

p(θ|d) = L(d|θ)π(θ)
z(d)

(1)

where L(d|θ) is the likelihood of measuring the data
d given some source parameters θ, π(θ) is the prior
distribution of these source parameters, and z(d) is the
evidence [3].
The Bilby analysis assumes that the noise in the

data is stationary and Gaussian. This allows the use
of the Gaussian noise likelihood [4]:

L(d|θ) = 1

|2πC| 12
exp

{
−1

2
χ2(d, h)

}
(2)

with

χ2(d, h) = [d− h(θ)]C−1 [d− h(θ)] (3)

where d is a vector representation of the data, C is
the noise covariance matrix and h(θ) is the waveform
that depends on parameters θ. In practice, Eq. 2 is
costly to compute, so the Whittle approximation to
the likelihood is used [5]:

L(d|θ) ∝ exp

[
−1

2
(d− h|d− h)

]
(4)

which expands to

L(d|θ) ∝ exp

[
−1

2
(d|d) + (d|h)− 1

2
(h|h)

]
(5)

where (a|b) is the noise-weighted inner product defined
as

(a|b) ≡
N
2 −1∑
j=0

4Re

(
ã∗j bj

Sn(fj)
∆f

)
(6)

where ∆f is the frequency resolution, N is the number
of samples, and Sn is the power spectral density (PSD)
of the data segment.

There are cases where the assumption of stationary,
Gaussian noise may not be valid due to the presence
of glitches in data. These glitches may create a bias in
the likelihood calculations, especially when they occur
close to a gravitational-wave signal [6]. Therefore, seg-
ments of strongly non-stationary, non-Gaussian data
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must be dealt with before the likelihood can be cal-
culated using Eq. 5. While other methods have been
developed to address non-stationarity over long periods
of time [7–10], these do not account for glitches. It is
also possible to model glitches and then remove them
from data [11–19], but this can be time-consuming and
is not guaranteed to fully remove all glitch impacts.

The increasing sensitivity of gravitational-wave de-
tectors will increase the probability of glitches occur-
ring near signals in upcoming observing runs. In this
paper we present the implementation of inpainting as a
method to mitigate the effect of glitches in PE analyses,
specifically in Bilby. We find that, although this pro-
cess significantly increases Bilby’s runtime, inpainting
successfully prevents data inside a given segment from
contributing to posteriors. Inpainting provides an al-
ternative to more computationally expensive methods,
and can be done within an analysis rather than as pre-
processing step.

II. METHODS

The process of inpainting was derived in [8] and dis-
cussed in the context of PE in [20] and [21]. Here we
review this derivation and its application to likelihood
calculations.

We denote Nd the total number of data samples and
Nh the number of data samples in the specified region
to be inpainted, known as the hole. The hole is pre-
sumably within the chosen segment of data, such that
Nh ≤ Nd. The inpainting filter F is designed to satisfy

u(α)TC−1Fd = 0 (7)

Here, u(α);α = 0, ..., Nh−1 is a column vector of length
Nd that equals 1 at one of the samples in the hole, and
0 elsewhere. Both the inverse noise covariance matrix
C−1 and F are of size Nd ×Nd.

The covariance matrix is the Fourier transform of the
PSD. Therefore, if the samples inside the hole satisfy
Eq. 7 in the time domain, then these samples will not
contribute to the noise-weighted inner products (Eq. 6)
in the frequency domain.

To prevent the last term in Eq. 5 from creating a bias
in the results, we must inpaint both the data and the
waveform. For clarity, the term “waveform” will be
used for waveforms generated within the analysis by
sampling the parameter space, and the term “signal”
will be used to refer to the gravitational wave signal
that is presumably found in the data. By inpainting

both the data and waveforms, the likelihood becomes

L(dinp|θ) ∝ exp[−1

2
(dinp|dinp) + (dinp|hinp) (8)

−1

2
(hinp|hinp)] (9)

where none of the terms have contributions from val-
ues inside the hole. Note that to ensure no contri-
butions from inside of the hole, both the data and the
waveform must be inpainted. With the likelihood com-
pletely blinded to the region inside the hole, the un-
certainty in the results should increase but any glitch
inside the hole will be prevented from creating a bias.
Because this method is not dependent on the presence
of glitches, applying an inpainting filter to stationary,
Gaussian data should solely increase the uncertainty in
the results.

We use two methods to calculate the inpainted data
Fd, each of which has its own advantages and disad-
vantages.

A. The F method

The first method we use to obtain the inpainted data,
which will be referred to as the “F method”, involves
directly computing the F matrix and applying it to the
data. The F matrix is defined as

F ≡ I −AM−1ATC−1 (10)

where Ai,α = u
(α)
i , andM is the Nh×Nh portion of the

inverse covariance matrix corresponding to the samples
to be inpainted. The resulting F matrix takes a form
similar to an identity matrix with the exception that
the rows corresponding to the samples in the hole have
been altered.

The computation of F is done as a preprocessing
step, and therefore does not contribute significantly to
the run time of an analysis. The increase in run time
is due to the matrix multiplication that inpaints the
waveforms generated within Bilby. This matrix mul-
tiplication is of O(N2

d ), and occurs for every waveform
that is sampled in the analysis.

An important factor to consider with this method is
that a large amount of computer memory is required to
store one or more Nd ×Nd matrices. This is especially
important when analyzing long signals such as neutron
star black hole (NSBH) and binary neutron star (BNS)
mergers. Because of this and the expected increase in
run time for longer signals, we only use this method
when analyzing BBH mergers. Because the full F ma-
trix contains mostly zeroes and ones, this issue could
be addressed by storing only the relevant rows of the F
matrix (those corresponding to the samples inside the
hole). However, we do not do this in this study.
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B. The Toeplitz Method

From Eq. 10, the inpainting filter can also be inter-
preted as a filter that removes the projection of the
data into the overwhitened data space inside the hole,
leaving the values outside of the hole untouched. We
can then rewrite our inpainted data as

Fd = d− dproj (11)

where dproj is this projection. With Eq. 7

ATC−1dproj = ATC−1d (12)

We take dproj to be zero everywhere except inside the
holes. We can pick out the values in the hole by writing

ATC−1AAT dproj = ATC−1d (13)

If there is only one hole to be inpainted, such that
Ai,j = A(i+1),(j+1) = 1 for some range of consecutive

indices i, j and is 0 elsewhere, then ATC−1A will be
Toeplitz, and Eq. 13 can be solved for AT dproj effi-
ciently using Levinson recursion [22], which is done in
O(N2

h).
Algorithms for both of these inpainting methods

were implemented in Bilby and their effects on run
time and PE results were studied for a variety of cases.

III. VALIDATION TESTS

A. Time series tests

We first ensure that our algorithms perform as they
were designed to by using them to inpainting seg-
ments of data and overwhitening the results. The over-
whitened data should be zeroed inside of specified hole
regions.

Fig. 1 shows a 4s segment of randomly generated
data inpainted at three holes with different window
lengths using the F method. The overwhitened strain
has been effectively zeroed inside each hole.
Similarly, Fig 2 shows data that was inpainted using

the Toeplitz method. This method can only be used
for a single hole. The overwhitened strain is once again
zeroed within the specified region. This confirms that
the algorithms worked correctly.

B. Efficiency

To study how each method increases Bilby’s run
time, we measure the factor by which the single-
likelihood evaluation time increases when the wave-
forms are inpainted. Using a 4 second segment of data

FIG. 1. Overwhitened inpainted data obtained using F
method. Vertical lines show specified limits of each hole.

FIG. 2. Overwhitened inpainted data obtained using
Toeplitz method. Vertical lines show the specified limits
of the hole.

sampled at 4096 Hz with an injected binary black hole
(BBH) signal, the single-likelihood evaluation times
of 30 samples are measured for 15 different window
lengths between 0 and 2 seconds. We then take the
median evaluation time for each window and divide by
the median evaluation time for samples that were not
inpainted. These factors of increase in single-likelihood
evaluation times are shown in Fig. 3 for both methods.

The sharp spikes in this figure are most likely due to
the small amount of samples that were evaluated. This
could be improved by rerunning this test with a larger
number of samples per window and a larger number of
windows, although this would take a significant amount
of time to complete. Nevertheless, this figure is enough
to study the behavior of these algorithms.

Inpainting with the F method increases the evalua-
tion time to over 100 times its original value for this
segment duration and sample rate. As the inpainted
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FIG. 3. Factor of increase in single-likelihood evaluation
times (T/T0) for different window lengths inpainted the us-
ing F method and the Toeplitz method.

window increases in length, the factor of increase stays
approximately constant. This is because the matrix
multiplication depends on Nd rather than Nh. On the
other hand, because the Toeplitz method is in the or-
der of N2

h , the evaluation times are, for most windows,
less than that of the F method, and increase as the
window length increases.

Between a 1.00s and 1.25s window, the increase in
evaluation time for the Toeplitz method surpasses that
of the F method. This may be because the Toeplitz
method has non-leading-order terms that are depen-
dent on Nh, while the F method does not. Past this
window length, these non-leading order terms may be-
come more significant.

Based on these results, the Toeplitz method is pre-
ferred if there is only one hole to be inpainted and the
window is not too wide. This is not only because it is
faster, but also because less memory space is required.
If there is more than one hole to be inpainted, then the
F method should be used.

C. Injection Study

In order to confirm that inpainting stationary Gaus-
sian data only increases uncertainty in the posteriors,
we inject a binary black hole signal into Gaussian noise
scaled to the PSD of both LIGO detectors at approx-
imately 128 seconds before GW150914 [23]. We use
the IMRPhenmoPv2 [24] approximant and 4 seconds
of data sampled at 4096 Hz. The injected parameters
for this signal are shown in Table I, along with the
priors used. Spectrograms of the whitened data with
the injection are shown in Fig. 4. The Dynesty sampler
[25] was used to sample the parameter space.

TABLE I. Injection parameters and priors used.

Parameter Value Prior Shape Limits Boundary
Mchirp 15.53 Uniform 10-20 -
q 0.52 Uniform 0.125-1 -
a1 0.65 Uniform 0-0.99 -
a2 0.65 Uniform 0-0.99 -
ϕ12 0.0 Uniform 0-2π Periodic
ϕJL 0.0 Uniform 0-2π Periodic
dL 100 Uniform 50-2000 -
δ 1.00 Cosinusoidal - -
α 2.00 Uniform 0-2π Periodic
θJN 1.65 Sinusoidal - -
ψ 1.50 Uniform 0-π Periodic
ϕ 2.00 Uniform 0-2π Periodic
tc 2.5 Uniform 2.4-2.6 -
θ1 0.0 Sinusoidal - -
θ2 0.0 Sinusoidal - -

FIG. 4. Whitened spectrograms of injected BBH signal in
LIGO-Hanford (top) and LIGO-Livingston (bottom).

1. Parameter recovery

To provide a baseline for the results, a standard anal-
ysis without the inpainting filter was performed. A full
PE analysis was done inpainting the data of both de-
tectors at a region centered 0.1s before the injected
geocentric time with a 0.05s window. The whitened
spectrograms of the inpainted data with this configu-
ration is shown in Fig. 5. A second inpainted analysis
was done centered 0.25 seconds before the injected geo-
centric time with a 0.2 second window. The whitened
spectrograms of the inpainted signal with this configu-
ration are shown in Fig. 6. Because we only chose one
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FIG. 5. Whitened spectrograms of injected BBH signal in
LIGO-Hanford (top) and LIGO-Livingston (bottom), in-
painted 0.1 s before tc with a 0.05 s window.

FIG. 6. Whitened spectrograms of injected BBH signal in
LIGO-Hanford (top) and LIGO-Livingston (bottom), in-
painted 0.25 s before tc with a 0.2 s window.

window for each inpainted analysis and both window
lengths are short, both inpainted analyses were done
with the Toeplitz method.

TABLE II. Recovered parameters for the standard analysis
and the inpainted analyses with both configurations.

Injected Standard Inpainted Inpainted

(w=0) (w=0.01) (w=0.2)

M/M⊙ 15.53 15.63+0.12
−0.11 15.56+0.15

−0.14 15.77+0.73
−0.43

q 0.52 0.60+0.16
−0.12 0.55+0.11

−0.09 0.53+0.26
−0.13

a1 0.65 0.81+0.11
−0.15 0.90+0.06

−0.11 0.84+0.09
−0.13

a2 0.65 0.55+0.24
−0.24 0.34+0.26

−0.23 0.58+0.26
−0.29

ϕ12 0.0 3.25+2.69
−2.89 3.07+2.88

−2.78 3.10+2.11
−2.08

ϕJL 0.0 3.74+0.45
−0.47 3.16+2.15

−2.11 3.60+2.15
−3.23

dL/Mpc 100 104.41+15.47
−13.49 104.49+17.54

−14.42 89.09+16.24
−14.13

δ 1.00 −0.93+0.08
−0.07 −0.93+1.01

−0.08 0.99+0.11
−0.86

α 2.00 4.98+0.18
−0.25 4.89+0.29

−0.46 2.02+3.78
−0.32

θJN 1.65 1.45+0.07
−0.07 1.48+0.09

−0.10 1.56+0.09
−0.13

ψ 1.50 1.66+0.12
−1.49 0.28+2.10

−0.18 0.48+2.51
−0.41

ϕ 2.00 2.87+2.48
−2.04 3.10+2.22

−2.15 3.10+2.20
−2.10

tgeo/s 2.5 2.48+0.00
−0.00 2.48+0.02

−0.00 2.50+0.00
−0.00

θ1 0.0 0.26+0.13
−0.11 0.24+0.14

−0.10 0.26+0.20
−0.14

θ2 0.0 0.67+0.37
−0.31 1.07+0.65

−0.57 0.70+0.45
−0.33

2. Comparison to standard posterior

The recovered parameters from the standard and in-
painted runs, along with their 90% credible intervals
are shown in Table II. In the standard analysis, most
parameters were recovered within the 90% credible in-
terval. However, parameters such as sky location, geo-
centric time, and angles related to angular momenta
and spin were not recovered within this credible inter-
val. The error in sky location may be because time
delay is a more reliable measurement, and Bilby re-
covers a sky location within the ring of sky locations
with equal time delays. Meanwhile, ϕ12, ϕJL, θJN , θ1,
and θ2 are likely not in their 90% credible intervals due
to the priors used for these parameters. To obtain bet-
ter recovery of parameters, these analyses should be
done for a set of injections with parameters that are
representative of the priors used.

Although the accurate recovery of parameters is im-
portant for both standard and inpainted analyses, once
we establish that the posteriors obtained in the stan-
dard analysis are reasonable, we are more interested in
how the posteriors obtained with the inpainted anal-
ysis compare with those obtained with the standard
analysis. The second and third columns of Table II
show the results for both inpainted analyses.
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FIG. 7. Posteriors for chirp mass, mass ratio, and effec-
tive spin for the standard, first inpainted analysis (win-
dow=0.01s), and second inpainted analysis (window=0.2s).
Injected values are shown in black.

The corner plots for the chirp mass, mass ratio, and
effective spin posteriors are shown in Fig. 7. These pa-
rameters are typically recovered with the most accu-
racy, so it is important to verify that inpainting does
not introduce a bias when recovering them. As seen
in the figure, the corner plots obtained with the first
inpainted configuration are similar to those obtained
with the standard analysis. This reveals that the im-
plementation of inpainting did modify the data, but
the window was too small to create large differences
in the posterior, which was the expected result for a
window size of 0.01 seconds. Once the window was in-
creased to 0.2 seconds, the posteriors appear to spread
out in relation to the standard results. The median
of these posteriors did not significantly shift in a way
that would suggest a bias, which confirms that inpaint-
ing only increased the uncertainty in the results.

For further comparison and validation of our meth-
ods, Table III shows the statistical properties of the
log-likelihood posteriors obtained for each of the three
analyses. These results suggest that the log-likelihood
decreases as the inpainted window increases. This
is because when larger segments of the data are in-
painted, there are more terms that are zeroed out in
the likelihood calculation, decreasing its final value.
For the same reason, the standard deviation increases
as the window increases. Data that would originally
make the uncertainty smaller is being removed with
the filter.

TABLE III. Statistical properties of log-likelihood posteri-
ors.

Quantity Standard Inpainted Inpainted

(w=0s) (w=0.01s) (w=0.2s)

Median 246.600 196.433 169.047

Standard Deviation 2.451 2.651 2.935

3. Effect of changing center time

As shown in [6], glitches have a particularly strong
effect on PE results when they occur at or near merger
time. For this reason, we study the effect of inpainting
as the center time of the hole approaches merger time.

Fig. 8 shows chirp mass posteriors obtained by in-
painting a 0.05 s window for different time delays, from
0 seconds (directly over merger time) to 0.5 seconds
with a step of 0.1 seconds. Delay refers to the amount
of time before the merger at which the center of the
hole was placed. The gray distribution shows the re-
sults for the standard analysis. It is important to note
that for these results, all parameters except chirp mass,
mass ratio, phase, and geocentric time were fixed to re-
duce run time.

The posteriors obtained for delays between 0.5 and
0.1 seconds appear comparable to the standard result.
However, the posterior obtained when inpainting di-
rectly over the merger time is significantly different
from the rest. The abrupt change between the delay of
0.1 and 0 may be, in part, because not enough delays
were tested between these values to produce a smooth
transition. BBH signals are short and therefore the
0.1 second step used may have been too large in rela-
tion to the signal duration. Additionally, fixing various
parameters may have caused the analyses at lower de-
lays to better recover the chirp mass even when the
inpainted window was close to the merger time.

The effect of changing the center time should be re-
studied by sampling the entire parameter space and
by including more delay values. This will better de-
termine whether the flattened posterior obtained when
inpainting over merger time is due to the posterior ap-
proaching the prior distribution, which is uniform for
chirp mass, or to a bias in the PE analysis.

4. Effect of changing window length

In Sec. III C 2 the results suggested that as the win-
dow length increases, the posteriors appear to spread
out in relation to the standard results. To further look
into this behavior, shorter analyses were done with
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FIG. 8. Posteriors obtained for chirp mass by inpainting a
0.05s window centered 0.0s to 0.3s before merger time.

changing window lengths, with the idea that inpaint-
ing the entire data segment should result in posterior
distributions that resemble the priors used.

Fig. 9 once again shows chirp mass posteriors com-
pared to the standard posterior in gray for analyses
with different window lengths, ranging from 0.35s to
0.5s. These holes were centered 0.5 seconds before
merger time. The results for data inpainted with a win-
dow of 0.35s were in agreement with those of the stan-
dard analysis. However, as we increase the inpainted
window, these posteriors flatten. As expected, past a

FIG. 9. Posteriors obtained for chirp mass by inpainting a
hole centered 0.5s before merger time with windows ranging
from 0.35s to 0.5s.

certain window length the posteriors aligned with the
prior used, which was uniform in chirp mass and lim-
ited from 10 M⊙ to 20 M⊙.

For this particular data segment with the center time
placed 0.5s before the geocentric time of the merger,
the threshold window length with which the analysis
is still able to recover meaningful posteriors lies be-
tween 0.45s and 0.5s. This threshold’s depedency on
waveform types and on center time of the hole can be
further studied.
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5. Likelihood Reweighting

The significant increase in run time explained in
Sec. III B can be improved by a reweighting procedure
as explained in [26]. When this procedure is used for
inpainting, an initial analysis can be performed only
inpainting the data, and not the waveforms, such that
the likelihood,

L⊘(dinp|θ) ∝ exp[−1

2
(dinp|dinp) + (dinp|h)−

1

2
(h|h)]

(14)

is allowed to have a bias attributed to the last term.
Assuming that this bias is not too large, the result-
ing posterior samples can be reweighted using a weight
function

w(d|θ) ≡ L(dinp|θ)
L⊘(dinp|θ)

(15)

such that

p(θ|d) = w(d|θ)L⊘(d|θ)π(θ)
z(d)

(16)

This reweighting procedure has already been imple-
mented in Bilby, and it is straightforward to apply
it with inpainting. To test how a posterior improves
with the rewighting procedure, we inpaint our Liv-
ingston data as a pre-processing step and then run a
standard analysis to obtain initial likelihoods in the
form of Eq. 14. Then we reweight these results with an
inpainted analysis using the built-in rewighting func-
tion. These results can be compared to the original
fully inpainted posteriors to observe whether reweight-
ing improves the biased results.
Fig. 10 shows these results. A close look at this figure

shows that the uncertainty region of the reweighted
analysis is closer to that of the fully inpainted analysis
than that of the biased analysis, which was the desired
effect of the reweighting procedure.

Although much more efficient than a fully inpainted
analysis, reweighting must be done with caution. If the
bias in the likelihood in Eq. 14 is too large, then the
resulting posterior will not have enough samples within
the true credible regions to be reighted correctly. This
can happen if the window is too large in relation to the
signal.

IV. FUTURE WORK

With the results that have been discussed, there is
a foundation set for further study of the applications
of inpainting. The current algorithms can be officially

FIG. 10. Posteriors obtained for chirp mass and mass ra-
tio by inpainting only the data as a preprocessing step
(Data Only), inpainting both the data and the waveforms
in the analysis (Fully Inpainted) and reweighting the poste-
rior samples from the analysis with the bias (Reweighted).

added onto Bilby for testing with Bilby PIPE, which
will allow for more thorough analyses and conclusions.

Because PE is already an extensive process, it is
important to improve the efficiency of our algorithms
wherever it is possible. As previously mentioned, the
F method can be improved by rewriting the algorithm
such that it stores only the rows of the F matrix cor-
responding to the samples inside the hole. Once this is
implemented, this method should be of O(NdNh) in-
stead of O(N2

d ), which makes it much more usable for
future analyses.

More inpainted analyses should also be performed on
a population of injections that is representative of the
priors used. This will provide a better measure of how
often inpainted analyses recover injected values. The
variables that can be tested include the center time
and window of the holes, the amount of holes, the dis-
tance between holes, and the waveform types to be an-
alyzed. With this study, we can be more certain that
this method does not create a bias in a PE analysis.

The purpose of inpainting is to mitigate the effect
of glitches, so future analyses should be done with in-
jected glitches to study if and how the posteriors im-
prove when a glitch is inpainted. This will also help
determine how much of the glitch must be inpainted
to obtain better results. Once this is understood, in-
painting can be applied to detected signals that have
occurred near glitches, such as GW170817, and will be
ready for use in O4 and future observing runs.
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