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Recovering accurate distributions for the source parameters of gravitational-wave signals is essential
to confirm current models of general relativity and understand astrophysical properties of the uni-
verse. Glitches in gravitational-wave strain data may cause a bias in parameter estimation analyses
that use Bayesian inference. We implement inpainting to address this problem in Bilby, one of
various parameter estimation pipelines used for gravitational-wave analyses. Using two different
methods to obtain inpainted data, we study how each process affects likelihood evaluation times
and Bilby’s ability to recover accurate posterior distributions. We will also work towards running
different PE analyses using inpainted data with injected signals and studying how often Bilby can
recover injected parameter values within a specific confidence interval.

I. INTRODUCTION

Raw strain data recorded by gravitational-wave
(GW) detectors such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) is typically
dominated by noise coming from a variety of different
sources. Although many of these sources are known
and well-modeled, there are often short noise bursts,
known as glitches, of unknown origin that impact the
sensitivity of the data analysis softwares used by the
LIGO Scientific Collaboration (LSC) [1]. Much of LSC
efforts are dedicated to mitigating the effect of glitches
in GW signal searches and parameter estimation (PE)
methods.
Bilby is one of various PE pipelines used by the LSC

[2]. Like most PE pipelines, it uses Bayesian inference
to produce posteriors, which are probability distribu-
tions of the GW source parameters. These are com-
puted using Bayes’ theorem:

p(θ|d) = L(d|θ)π(θ)
z(d)

(1)

where L(d|θ) is the likelihood of measuring the data
d given some source parameters θ, π(θ) is the prior
distribution of these source parameters, and z(d) is the
evidence [3].
The Bilby analysis assumes that the noise in the

data is stationary and Gaussian. This allows the use
of the Gaussian noise likelihood [4]:

L(d|θ) = 1
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(2)

with

χ2(d, h) = [d− h(θ)]C−1 [d− h(θ)] (3)

where d is a vector representation of the data, C is
the noise covariance matrix and h(θ) is the waveform
that depends on parameters θ. In practice, Eq. 2 is
costly to compute, so the Whittle approximation to
the likelihood is used [5]:

L(d|θ) ∝ exp

[
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]
(4)

where (d−h|d−h) is the noise-weighted inner product
defined as
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(5)

for a segment with N samples and power spectral den-
sity Sn.

In this paper we explore cases where these assump-
tions may not be valid due to the presence of glitches
in data. Glitches may create a bias in the likeli-
hood calculations, especially when they occur close to
a gravitational-wave signal [6]. Therefore, segments
of strongly non-stationary, non-Gaussian data must be
dealt with before expressions like Eq. 2 and Eq. 4 can
be used.

A. Inpainting

A method to address the effect of glitches on data
analysis using an inpainting filter was derived in [7]
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and discussed in the context of PE in [5]. Here we
review this derivation and its application to likelihood
calculations.
We denote Nd the total number of data samples and

Nh the number of data samples in the specified region
to be inpainted, known as the hole. The inpainting
filter F is designed to satisfy

u(α)TC−1Fd = 0 (6)

where u(α) is a list of Nh vectors that are 1 at one of
the samples in the hole and 0 elsewhere.
While the matrix for the inpainting filter F can be

directly obtained as defined in Eq. 43 of [7], the in-
painted data Fd can also be obtained without directly
finding F by solving Eq. 6. To do this, the inpainted
data can be rewritten as:

Fd = d− dproj (7)

where dproj is the projection of the hole-region data
into the overwhitened data space and 0 elsewhere. If

we define the matrix A such that Ai,α = u
(α)
i , then the

Toeplitz system,

ATC−1AAT dproj = ATC−1d (8)

can be solved for dproj in the hole region.
Once the inpainted data is obtained, it can be used

for Bayesian analysis. Using the inpainted data and
waveform in the Whittle approximation (Eq. 4),

L(dinp|θ) ∝ exp

[
−1

2
(dinp − hinp|dinp − hinp)

]
(9)

= exp
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2
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]
(10)

Overwhitening corresponds to dividing by the power
spectral density Sn. By design of the inpainting filter
(Eq. 6), when we calculate each of the terms above
using Eq. 5, data inside the hole will not contribute to
the overall likelihood.
Unlike gating, which is another popular method for

glitch mitigation, inpainting does not introduce arti-
facts outside the hole once the data is whitened. It
therefore allows for minimal data corruption. Fig. 1
visually compares gating and inpainting for mitigating
the glitch near GW170817. As shown, inpainting ef-
fectively reduces the appearance of the glitch and does
not modify data outside the specified window.

Here we implement inpainting in Bilby and study
how this process affects PE analyses. Sec. IIA and
Sec. II B describe two methods that we use to obtain in-
painted data and the computational efficiency of each.

FIG. 1. Glitch near GW170817. Top panel shows the
whitened data. Middle panel shows the whitened gated
data. Bottom panel shows inpainted data.

Sec. II C shows how we inpaint multiple segments of
data. Sec. IID presents the results of different PE runs
that have been completed with our methods. Finally,
Sec. III and Sec. IV describe the problems we have
encountered and our future plans for this project.

With LIGO’s increasing sensitivity, having a glitch
mitigation method like inpainting implemented in
BILBY for future observing runs will be of great value
for astrophysical analyses of gravitational waves.

II. METHODS

As described in Sec. IA, the inpainted data can be
obtained either by explicitly finding the F matrix or
by solving the Toeplitz system in Eq. 8. Both of these
methods were implemented to compare their efficien-
cies in the context of PE.

A. Solving for F

To use the F matrix, we calculate each term in Eq.
43 from [7], then apply the filter by multiplying Fd.
Fig. 2 shows a segment of overwhitened inpainted data
that was obtained by directly finding and applying the
F matrix to the data. Note that this is an arbitrar-
ily selected segment that did not necessarily contain
a glitch. The data within the holes is approximately
zero, as we require. The small visible artifacts are most
likely due to numerical noise.
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FIG. 2. Overwhitened inpainted data obtained by directly
applying F matrix. Red vertical lines specify the region
that was modified.

1. Computational efficiency

To find F , the costliest individual step involves in-
verting a matrix of size Nh×Nh, which has a computa-
tional complexity of O(N3

h). However, in our analysis,
this is done as a pre-processing step for each interfer-
ometer’s data, so this does not contribute significantly
to the run time of a complete analysis. The next costli-
est operation is the matrix multiplication that applies
F to the data and the signal, which is of O(N2

d ). This
is repeated for every sample in the PE analysis and
does increase the run time significantly.

We inject a binary black hole (BBH) signal into 4
seconds of data sampled at 4096 Hz and compare the
single-likelihood evaluation times with and without in-
painting. 30 samples were evaluated for 15 window
lengths between 0 and 2 seconds. Fig. 3 shows the ratio
between the median evaluation time for each window
and the median evaluation time without inpainting.

The evaluation time is approximately constant with
increasing windows lengths. This is to be expected
since the matrix multiplication depends on Nd rather
than Nh. The evaluation time increases by 2 orders of
magnitude for this particular data length and sample
rate.

An important factor to consider with this method is
that a large amount of computer memory is required to
store one or more Nd ×Nd matrices. This is especially
important when analyzing long signals such as neutron-
star-black-hole (NSBH) and binary neutron star (BNS)
mergers. Because of this and the expected increase in
run time for longer signals, we only implement this
method when analyzing BBH mergers.

FIG. 3. Increase in evaluation time due to inpainting by
directly finding F . Twindow represents the median single-
likelihood evaluation time for each window and Twindow=0

represents the median single-likelihood evaluation time
without inpainting.

FIG. 4. Overwhitened inpainted data obtained by solving
Eq. 8 for dproj . Red vertical lines specify the region that
was modified.

B. Solving the Toeplitz system

Fig. 4 shows overwhitened inpainted data that was
obtained by solving the Toeplitz system in Eq. 8, for
the same segment of data used for Fig. 2. The data
inside the hole is effectively zeroed when it is over-
whitened.

1. Computational efficiency

Because C−1 is a Toeplitz matrix and because we
need only solve Eq. 8 in the hole region, this method
can be done in O(N2

h) operations using Levinson re-
cursion [8].

Similar to Fig. 3, Fig. 5 shows the increase in evalua-
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FIG. 5. Increase in evaluation time from inpainting by solv-
ing Eq. 8. Twindow represents the median single-likelihood
evaluation time for each window and Twindow=0 represents
the median single-likelihood evaluation time without in-
painting.

tion times due to inpainting with this method. Because
the computational complexity depends on Nh rather
than Nd, the evaluation time increases for increasing
window lengths.

This method requires less memory than storing the
F matrix, which allows easier use for analysis of longer
signals. Fig. 5 shows how the increase in time com-
pares across BBH, NSBH, and BNS signals. Because
BBH signals are typically shorter than BNS and NSBH
signals, a larger fraction of them is modified by in-
painting, given that the inpainting window is kept con-
stant. BNS and NSBH signals take longer to evalua-
tion, but inpainting is only dependent on data length.
This makes the increase in likelihood evaluation time
greater for BBH signals, as shown in the plot.

2. Effect on likelihood evaluations

Bilby calculates the first term in Eq. 10, which is re-
ferred to as the noise log-likelihood, separately from the
last two terms, which are collectively referred to as the
log-likelihood ratio. Fig. 6 shows how the log-likelihood
ratio was affected by increasing the inpainting window.

With windows closer to 0, the variance in the like-
lihoods is greater. This aligns with what is expected
of different waveforms being sampled against the data
and some being more well-fitting than others. When
the entire segment of data is inpainted, there is no data
that contributes to the likelihood and the log-likelihood
ratio approaches 0, as shown in the plot.

FIG. 6. Calculated log-likelihood ratios for different in-
painting windows. Each point represents a single sample in
the parameter space.

FIG. 7. Overwhitened data obtained by solving Eq. 8 in-
dividually for multiple segments. Data produced is incor-
rectly inpainted. Red vertical lines show the specified limits
of each hole.

C. Inpainting multiple segments

Eq. 8 is, in practice, only solved in a single hole
region, which allows the effective use of Levinson re-
cursion to solve the Toeplitz system. However, when
multiple segments of data are to be inpainted, each
hole contributes to the final solution. Solving Eq. 8
for each hole region individually produces incorrect re-
sults. This is shown in Fig. 7, where three segments
of data were inpainted at three different regions with
different window lengths by solving Eq. 8 for each one.
The overwhitened data is not zeroed in the holes be-
cause the solution in each segment fails to take into
account the existence of other holes.

If one were to solve Eq. 8 at every hole at once, the
computational complexity would increase, and the effi-
ciency that was gained from having a Toeplitz system
is lost.

To inpaint multiple segments, we use the F matrix,
since this method can take every hole into account si-
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FIG. 8. Overwhitened data with multiple inpainted seg-
ments obtained by solving for F matrix. Red vertical lines
show the specified limits of each hole.

TABLE I. Fixed parameters for GW150914.

Parameter Value
a 1 0.0
a 2 0.0
tilt 1 0.0
tilt 2 0.0
phi 12 0
phi jl 0
dec -1.2232
ra 2.19432

theta jn .89694
psi 0.532268

luminosity distance 412.066

multaneously. Fig. 8 shows a segment of data inpainted
at three different regions with different window lengths
by applying the F matrix. The data produced is ap-
proximately zero in the holes when overwhitened, as
we require.

D. PE runs with inpainting

Short PE runs have been completed for GW150914
both by finding F and by solving Eq.8. We only sample
merger time, phase, chirp mass and mass ratio for a
quick analysis. A full list of the values used for fixed
parameters is shown in Table I.
To ensure that our implementation of these methods

does not adversely affect the performance of Bilby, we
inpaint the data 1 second before merger time with a
window of 0.25 seconds. Inpainting a short segment
with a large time offset from merger time such as this
one should not significantly affect the posterior distri-
butions obtained.
Fig. 9 shows the posterior distributions obtained for

FIG. 9. Posterior distributions obtained for chirp mass,
without the inpainting filter applied, with the inpainted
data obtained by solving Eq. 8, and with the inpainted
data obtained by directly solving for the filter F. Data was
inpainted 1 second before merger with a window of 0.25
seconds. Orange vertical line shows accepted value. Orange
shading shows 90% credible interval.

chirp mass, and Fig. 10 shows those obtained for mass
ratio using each inpainting method discussed. Nei-
ther of the two inpainting methods negatively affected
Bilby’s ability to recover significant posteriors.

Fig. 11 shows the posterior distributions obtained
for the geocentric time of the signal. The distribution
time for the run with the inpainting filter applied 1
second before the merger time appears to match with
that of the standard analysis. However, the distribu-
tion for the run with the inpainting filter applied 0.1
seconds before the merger time appears to be slightly
shifted right. Geocentric time may be one of the pa-
rameters more sensitive to inpainting since bandwidths
in the signal that are vital for accurate recovery may
be removed with the filter.
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FIG. 10. Posterior distributions obtained for mass ratio,
without the inpainting filter applied, with the inpainted
data obtained by solving Eq. 8, and with the inpainted
data obtained by directly solving for the filter F. Data was
inpainted 1 second before merger with a window of 0.25
seconds. Orange vertical line shows accepted value. Orange
shading shows 90% credible interval.

III. PROBLEMS ENCOUNTERED

One of the main problems that we face with this
project is the significant run time that inpainting adds
to our analyses. Although we would like to test our
implementation for numerous test cases, with the cur-
rent run time of the code we must reconsider how many
are feasible for this summer. We considered using dif-
ferent computational resources outside of the CalTech
Computer Cluster, but this introduced new problems.
Our next attempt to deal with this problem will involve
running a standard analysis and then reweighting the
obtained samples with an inpainted analysis, based on
a process described in [9].

FIG. 11. Posterior distributions obtained for geocentric
time without the inpainting filter applied, with the filter
centered 1 second before merger with window of 0.1 sec-
onds, and with the filter centered 0.1 seconds before merger
with window of 0.05 seconds.

IV. FUTURE WORK

With our current understanding of how inpainting
increases the run time of PE runs, we can prepare a
set of injections to determine how often Bilby recovers
parameters within a specific confidence interval. We
will most likely only sample masses, geocentric time,
and phase to keep the runs short.

Once we have shown that this implementation works
correctly, we will prepare the code to be officially added
onto Bilby. As a long term goal. the code will also be
added to Bilby PIPE, which is an automation of Bilby
that provides command-line tools for gravitational-
wave inference [3].
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