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Abstract

Though only at the tabletop stage, future gravitational wave detectors aim to in-
clude a Phase Sensitive Optomechanical Amplifier (PSOMA) to help mitigate LIGO
readout losses. The triangular cavity of the PSOMA is experiencing mode mismatch,
which leads us to examine our mode matching lenses. The original method of analy-
sis was to model the tabletop configuration while taking lens thickness into account.
This became straightforward to model for a given set of mode matching lenses, yet the
research took a more general and fundamental direction in analyzing lens aberrations
for Gaussian beams. A conceptual idea of the cause and affects of lens aberrations,
inspired the use of a modal coupling method to quantify mode mismatch. This method
details how Gaussian beams propegating through curved optics can couple into higher
order modes. Though still in the beginning stages, the research provides valuable re-
sults on how not only the PSOMA lenses, but LIGO optics in general contribute to
higher order mode noise.
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1 Introduction

The majority of this paper discusses a general property of Gaussian beams and analyzes the
modal coupling from the fundamental Gaussian mode into higher order modes upon prop-
agation through a given surface. However, the impetus for the topic came from the mode
mismatch of a tabletop design of a Phase Senstive Optomechanical Amplifier (PSOMA),
which aims to be implemented in next generation LIGO [1].

Currently, the PSOMA uses two convex - planar lenses to assist in mode matching the laser
into a three mirror ring cavity. With proper alignment and positioning, the cavity still finds
itself mode mismatched. There are two main directions taken to analyze the mode mismatch.

First, lens thickness is taken in account in modeling of the tabletop setup. Originally, a thin
lens approximation was used in aiding the configuration of the design. To model a thick
lens, the ABCD matrix approach becomes useful. It gives direct numeric results which are
easily comparable to a thin lens model. Further analysis of these results may lead to more
accuracy in configuring LIGO optics for higher mode matching and resonances.

The second direction is a modal coupling analysis [10]. This approach originates from the
study of lens aberrations - in particular spherical aberrations. The cause and characteriza-
tions of spherical aberrations are largely understood with light rays, yet implementing them
with Gaussian beams for mode mismatch is not trivial. A fundamental understanding of
how aberrations work give a backbone to using a modal coupling method. This is where the
research takes a much more general direction. Upon propagation through a single curved
surface, scattering from the pure Gaussian mode into higher order Hermite and Laguerre
Gauss modes becomes modeled to quantify mode mismatch. In practice, multiple lenses are
used to minimize this effect, yet for the purposes of this project, the propagation through
only one curved surface (which can be thought of as a convex lens surface) will be analyzed.
Results from this approach give insight on the conditions in which higher order modes arise.
Much more research can be done than what is currently given in this paper. Upon further
exploration of the modal coupling approach, higher order modes and mode mismatch within
optical cavities can be significantly decreased in not just the PSOMA design, but in LIGO.

This paper will start by addressing how a thick lens is modeled and explain which parameters
are used to compare between thick and thin lens analyses. It will then discuss the next steps
of utilizing the results of thick lens model. In the second part, the paper will move into the
modal coupling analysis. A background on the modal coupling method will be addressed,
followed by detailing how the numerical and analytical modeling were done in python and
Mathematica respectively. The paper will discuss results of the modal coupling approach,
and then detail next research steps.
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Part I

Thick Lens Model

2 PSOMA Tabletop Set Up and Simplifications

In order to truly show the analytical ABCD matrix model, a visual of the set up, and simpli-
fication must be shown first. The configuration of the three mirror PSOMA cavity is shown
in Figure 1(a). The beam is focused using two lenses, and aligned using two steering mirrors.
The beam waist within the cavity is between MC2 and MC3.

This configuration is taken and simplified in order to perform the ABCD matrix evaluation
[11]. The beam waist position between MC2 and MC3 is taken to be half of its propagation
distance within the cavity. This distance becomes the length of the simplified caivty of Figure
1(b), meaning that the beam waist in the simplification diagram is at MC2. SM1 and SM2
are neglected, as they are both planar mirrors and don’t contribute to the transformation
of the q parameter in the ABCD calculation. The only components considered are lengths
L1, L2, and L3, and focal lengths f1 and f2, which become used in the thin lens ABCD
calculation.

Figure 1: a) Diagram of current ring cavity configuration. Note that MC1 has a ROC of 2m,
while MC2 and MC3 are both flat mirrors. The beam waist within the cavity is between
MC2 and MC3. b) Simplification from a ring cavity to Fabry-Perot cavity. f1 and f2 denote
focal lengths of each lens.
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3 ABCD Matrix

Each optical component (including free space) is represented with a 2x2 square matrix that
acts upon the q parameter of the Gaussian beam and transforms it. As a beam propagates
through multiple optical components, each matrix becomes multipled together, and the four
indices of the resulting matrix act as components A, B, C and D. These matix components
act on the beam’s initial q parameter, q1, and transform it to q(2). [5]

A thin lens is denoted with matrix: (
1 0
−1
f

1

)
An ABCD matrix calculation that transforms the beam from the laser source to the first
mirror of the Fabry-Perot cavity model of Figure 1(b) will be:

(
1 L3

0 1

)(
1 0
−1
f2

1

)(
1 L2

0 1

)(
1 0
−1
f1

1

)(
1 L1

0 1

)
=

(
A B
C D

)
Which gives the q(2) parameter in the equation [5] [7]:

q2
n

=
A q1

n
+B

C q1
n
+D

(1)

In which n is the index of refraction of the medium through which the beam propagates.
For the tabletop cavity, this is air.

Considering that beam width is the direct parameter of the Gaussian beam that correlates
to mode matching, q2 can be decomposed to find the beam width:

ω(z) =

√
λ|q|2
πℑ(q)

(2)

In which ω(z) is the beam width, λ is the wavelength of the beam, and ℑ(q) is the imaginary
portion of the q parameter.

When modeling for thick lenses, the distance within the lens along with the front and back
radius of curvatures are all taken into account [9]. As a result, the matrix for a single thick
lens becomes: (

1 0
n′−n
R2

1

)(
1 d

n′

0 1

)(
1 0

n−n′

R1
1

)
In which R1 and R2 are the front and back side radius of curvatures, d is the index of
refraction of the glass, and n′ is the index of refraction of the glass. Multiplying all matrices
of the two lens system generates a complex matrix, which can be run in an online matrix
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calculator to obtain a set of A, B, C, and D components. Each component of the resulting
matrix will be in the form of equations composed of optical parameters (such as R1, R2,
L1... etc). These equations can be evaluated in Python or Matlab to find the width ω(z) at
specific points in the propagation.

4 Thin and Thick Lens Comparison

ω(z) before MC1 ω(z) at MC2
Thin Lens 0.5443mm 0.3702mm
Thick Lens 0.5475mm 0.3763mm

Table 1: Comparative beam widths of the simplified triangular cavity.

The ABCD calculation for thin and thick lenses were numerically evaluated in python. They
are currently written so that the parameters of design can be defined independently, and then
evaluated to give the width ω(z) of the beam in two seperate places: upon entering the first
mirror of the cavity, MC1, and at the beam waist within the cavity (which is MC2 in this
simplification). There is a change on the order of micrometers when considering lens thick-
ness.

A quantitative result of the fractional mode matching power can be obtained from these
measurements. The formula to find this would be:

Mode Matching = 1−
(
|ωthick − ωthin|

ωthick

)2

(3)

Where ωthick is the beam width using thick lens approach, and ωthin is the beam width using
thin lens approach. The left hand side of the equation will be a fraction of the mode matching
power, which is a number between 0 to 1 where 1 represents being 100% mode matched.
With the PSOMA tabletop parameters and results of the thin and thick lens analyses, the
mode matching percentages are 99.99658% before MC1, and 99.9737% at MC2.

5 Next Steps for Thick Lens Analysis

Considering this is a simplification of a three mirror cavity, a useful approach would be to
fully model a triangular cavity using software package FINESSE [3]. By adding a detector
for the power transmitted in FINESSE (which would be located at the PD of Figure 1(a)),
resonance conditions can be found. One can model a scenario in which the positions of
the two mode matching lenses are tuned to give maximum power transmitted. Tuning the
positions of the lenses changes in the beam width at many points of its propagation. If one
then writes a component in FINESSE measuring the width of the beam as it enters the first
mirror of the cavity, then the power transmitted can be used to determine which beam width
entering the cavity at MC1 will create maximum resonance. In other words, FINESSE can
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be used to find the cavity eigenmode width.

FINESSE is assumed to use a thin lens approximation in its compiling, so it becomes nec-
essary to implement the thick lens ABCD matrix numerical model. The reason the thin
lens ABCD numerical model will not be used to find the ideal cavity beam width is because
it simplifies the model from a three mirror cavity into a Fabry-Perot cavity, thus losing its
anti-symmetric aspects. Using FINESSE can generate an accurate beam width for three
mirror anti-symmetric cavity resonance.

Once the ideal beam width for resonance is found, one can then use the thick lens evalua-
tion in python to generate a 2D tolerance map (or heat/contour plot) to that specific beam
width. Ideally, it should be a tolerance for how the beam width (at a given position such
as right before MC1) deviates from its eigenmode value as a function of lens 1 and lens 2
position. This can be used to precisely find the ideal positions of the two mode matching
lenses, and then implemented in the tabletop set up to determine how much using thick lens
model affects the mode matching.
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Part II

Higher Order Mode Coupling Model

6 Lens Aberrations

This section provides a basic introduction to the principles behind lens aberrations, which
inspires the use of a modal coupling approach in this research.

Spherical aberrations arise from the light at the edges of a spherical surface refracting more
than light near the center, [2] [12] resulting in multiple focal points for varying rays, as be
seen in Figure 1(a), points C, B, A, and F along the propagation axis. This results in a
blurred image.

Ray tracing illustrates that the further away from the center of the lens the light prope-

Figure 2: From Fundamentals of Optics Francis A. Jenkins and Harvey E. White. Chp. 9
(a) Diagram of how lens aberrations occur, and how they can be perceived. (b) Notice here
the Longitudinal Spherical Aberrations (Long. SA) and Latitudinal Spherical Aberrations
(Lat. SA).

page 8



LIGO-T2200160–v1

gates, the larger the distance between its focusing point, s′h, and the paraxial focal point
f ′.This difference can be quantified using ray tracing geometry and algebra. Under ideal
circumstances, the distance of the focal point can be found with a first order approximation
of sine, since the angle θ shown in Fig 2(b) is small. However, spherical aberrations can be
quantified if a third order sine approximation is used [4].

sin(θ) ≈ θ − θ3

3!
(4)

When using a third order to solve for the image length, the equation used to quantify lens
aberrations for rays of light becomes [4]:

n

s
+
n′

s′h
=
n′ − n

r
+

[
h2n2r

2f ′n′

(
1

s
+

1

r

)2(
1

r
+
n′ − n

ns

)]
(5)

In which the left side of the equation depicts the magnitude of the aberration, and the right is
dependent on a multitude of factors. The aberration size is directly proportional to h2. This
is consistent with Figure 1(a), and the original characterizations for lens aberration behavior.

Considering this phenomena, it must be considered for Gaussian beams, however, going
directly from ray tracing to Gaussian beams is not trivial. At the moment, there is no
quantified correlation of how varying focal points of light equate to the creation higher order
modes, or mode mismatch in an optical cavity. Thus, a modal coupling approach is used
for Gaussian beams. The basic principle that aberrations arise from a large width of light
focusing in a spherically curved lens inspires the analysis to be done using modal coupling.

Spherical aberrations can heavily be mitigated with the use of multiple lenses to refocus the
light, or with specially curved optics so that the light will all refract to the same location
[2]. These principles will also be taken into account when using the modal coupling method,
and dicussed for further research.

7 Higher Order Mode Coupling

The modal coupling approach heavily relies on Gaussian beam modeling. Starting from the
general form of a Gaussian beam:

E(x, y, z) = E0e
−i(ωt−kz) ω0

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
eiψ(z) (6)

Where k is the wave number, z is the position on the propagation axis, R(z) is the Gaussian
beam radius of curvature at z, ω0 is the beam waist, ω(z) is the beam width at z, and psi
is the Gouy phase. u is defined as:

u(x, y, z) =

√
2

π

1

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
eiψ(z) (7)
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Which represents the spatial properties of the beam, and is a solution to the paraxial wave
approximation.

It is generally known that upon misalignments, or unmatched curve fronts between the beam
and the optic, families of higher order modes can arise. The two familes of focus will be
the Hermite-Gauss (HG) modes, and Laguerre-Gauss (LG) modes. These families of modes
are each described as a set equations of u(x, y, z) that are solutions to the paraxial wave
equation. The HG modes for a Gaussian beam have the form:

unm(x, y, z) =
(
2n+m−1n!m!π

)−1 1

ω(z)
e(i(n+m+1)ψ(z))Hn

√
2x

ω(z)
Hm

√
2y

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
(8)

While the LG modes have the form:

upl(r, ϕ, z) =
1

ω(z)

√
2p!

π(|l|+ p)!
e(i(2p+|l|+1)ψ(z))

(√
2r

ω(z)

)|l|

L|l|
p

(
2r2

ω(z)2

)
e

(
−ik r2

2q(z)
+ilϕ

)
(9)

The set of polynomials Hn and Hm correspond to HG modes and L
|l|
p correspond to LG. The

indices, n,m and p, l are whole integers that denote the order of the mode. In both families,
each and every mode is a solution to the paraxial wave equation, meaning they represent an
infinite set of orthonormal basis vectors. As a result, the inner product yields:

∫∫ ∞

−∞
unmu

∗
n′m′dxdy = δnn′δmm′ (10)

The same is applicable to upl. Given this property, it is possible to construct an inner product
that produces a coupling coefficient, used to represent the scattering from the pure Gaussian,
0 0 mode to any higher order mode. Considering just Hermite in the following:

cnmn′m′ =

∫∫ ∞

−∞
unmu

∗
n′m′e(2ikZ(x,y))dxdy (11)

The Z(x, y) is significant. It is a surface function representing an optical element with cur-
vature in the propagation path of the Gaussian beam. With any given curved surface, the
orthonormality becomes distorted, and componenets of the pure Gaussian mode (0, 0) couple
into higher order modes. Given that the original inner product without the Z(x, y) function
produces 0 or 1, the magnitude of the coupling coefficient |cnmn′m′| will always be between
0 or 1. The amount that is coupled from the 0, 0 into higher order modes is represented by
the |cnmn′m′|2.

From here on, since the coupling from only a pure Gaussian mode is considered, the coupling
coefficients will be denoted cnm (or cpl for LG) in which n,m = 0, 1, 2, 3...etc.

It is assumed that n′,m′ = 0, which represents the pure Gaussian mode, and will be omitted
from future syntax.
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Figure 3: A visual of the process of the modal coupling propagation. Even though in
the visual, Z(R, x, y) is for a sphere facing opposite what is shown, when evaluated in the
integration, it makes no difference in the outcome since it is in an imaginary part in which
the absolute value is taken.

A visual of this process is illustrated in Figure 3. The semisphere represents an optical
surface such as a lens or mirror. The beam propagates through the optic in the z direction.
One specific coupling from the pure Gaussian mode on the left to the first LG higher order
mode on the right is illustrated in the intensity patterns of the beam. The coefficient, |c10|2
represents the fraction of the initial power of the incoming Gaussian beam is coupled into
that specific higher order mode.

After a beam propagates through a curved surface, it becomes a summation of the pure
Gaussian mode and all higher order modes. Each spatial mode equation is multipled by a
fraction of how much power is coupled into that mode:

u(x, y, z) =
∞∑

n,m=0

cnmunm(x, y, z) (12)

The resulting spatial field equation is then analyzed for its mode composition, width, and q
parameter.

Much more detailed information on the mathematics of Gaussian beams can be found in
Interferometer Techniques for Gravitational-Wave Detection, Chapter 9. [5]
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8 Using Python and Mathematica

Both Python and Mathematica [13] were used in the process of constructing the Gaus-
sian equations, and evalutating the inner product. In both programs, a spatial equation
unm(x, y, z) was written. Then, a complex conjugate, u ∗nm (x, y, z) was written and multi-
plied to the original spatial equation, along with e(2ikZ(x,y)).

It is key to note that the Z(R, x, y) function has the form of a sphere as shown in Figure 3.
R is the radius of curvature of the optic the beam propagates through.

Python evaluates its integral numerically by importing Scipy’s dqlquad function. This means
that the Gaussian beam parameters (Rayleigh range, beam waist, beamfront radius of cur-
vature, position z, etc) must be defined prior to numerical integration. This also means that
the bounds of the integral cannot go to infinity, since Python takes a finite amount of steps
to complete its integration. Thus, the integration bounds are manually set to encompass
virtually all of the beam, and becomes:∫∫ 1

−1

unmu
∗
n′m′e(2ikZ(x,y))dxdy

.
Depending on the size of the bounds, the Python dblquad function can run faster or slower,
yet the integration will always generate a numerical answer. It is also important to note that
the bounds are always well within the radius of curvature, so that Python will not evaluate
a complex integral in which x2, y2 > R2. Since cnm itself a complex number however, it is
necessary to explicitly keep the imaginary part of the integral in Python.

Mathematica is much more efficient in analytically evaluating the model. The integration
is done to infinity here. However, the integration cannot be done unless a Taylor expansion
is made to the function Z(R, x, y). This is necessary since evaluating an x and y beyond a
given radius of curvature R produces an error in the program. Therefore, in Mathematica,
the equation becomes:

Z(R, x, y) = R

(
1− (x2 + y2)

2R2

)
(13)

The program as of right now only runs integration for the second order expansion. Any
higher order approximations evaluate to error functions.

The advantage of using Mathematica is that the beam parameters do not need to be pre-
viously defined. Once the integration is completed, Mathematica can generate an equation
representing each coupling coefficient as a function of parameters such as optic radius of
curvature, beam width, and wavenumber. For instance, the equation for the coupling of a
pure Gaussian to another pure Gaussian in the Hermite basis is:

c00 =
2e(2ikR)R

2R + ikω2
(14)
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In which again, R is the radius of curvature of the Z(R, x, y) function representing an optic,
k is the wavenumber, and ω is the beam width.

These equations can then be taken and plotted in Mathematica to efficiently vary different
parameters such as beam width or optic radius of curvature to better characterize how the
higher mode coupling behaves.

Currently, Mathematica does not evaluate the integration Laguerre Gauss equations. It is
suspected that the debugging must be done in the bounds of the integration. In its current
set up, all of the steps leading up to the evaluation of the inner product are done the
same format as the Hermite Gauss, with only a difference in coordinate systems, and using
Laguerre Polynomials. However, Python can generate similar plots for the Laguerre basis
that Mathematica does for the Hermite. These will be discussed in the next section.

9 Distribution of Coupling Coefficients

It has been discussed that for a Gaussian beam propagating through an optical surface, lens
aberrations can be seen as the pure Gaussian mode coupling into higher order modes. A
modal coupling simulation run in python has been eveluated with the parameters shown in
Table 2.

It becomes relevant to determine how much power is distributed into higher order modes
upon coupling. The relative power can be found by taking the square of the absolute value
of the coupling coefficient. Considering that all functions are normalized, these values repre-
sent a fraction of the total power. In an ideal case, there should be no power scattered into
higher order modes, and the beam should stay 100% in the pure Gaussian mode. However,
the properties of lens aberrations are such that for light hitting a spherically curved sur-
face, the light farther from the center will refract more, thus creating spherical aberrations.
Equivalently, for Gaussian beams with larger beam width ω(z) relative to the optic they
propegate through, there will be more power coupled into the higher order modes.

Wavlength λ 1550 nm
Beam waist ω0 0.3482 mm
Position z 61.7 mm
Beam width ω(z) 0.359 mm
Beamfront Radius of Curvature Rc 1040.437 mm
Rayleigh Range zR 245.74 mm
Wavenumber k 4053.67 m−1

Gouy Phase ψ(z) 0.2459

Table 2: Parameter specifications needed to complete numerical integration in python.
Note that all parameters can be derived from λ, ω0, and z. Derivations for these

parameters can be found in: [5]
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Considering the properties of aberrations, the research first examines how power is dis-
tributed through higher order modes for a given radius of curvature. Figure 4 illustrates
this for a radius of curvature of 500mm. Approximately 78.55% is retained within the pure
Gaussian mode in both HG and LG. For HG, only the even modes are shown. This is because
in the inner product, any odd numbered index in a HG mode (such as n&m = 01, 10, 11,
12, 21, 23, 32... etc) creates a situation in which an odd function is integrated, making the
inner product zero. The Hermite polynomials Hn and Hm referenced in equation 7 create
the odd function whenever an odd index for n and m is chosen. Since the LG modes use a
different coordinate system with different polynomials, this concept does not apply.

At first glance, it may appear that the LG has more power coupled into its higher order
modes. However, since the n index represents a higher order mode in the x direction of pro-
pregation, and m is represented int he y direction, as a Gaussian beam undergoes a radially
symmetric mode coupling, the next higher order mode can be thought of as a c02+ c20. This
combination is equivalent to the c10 LG higher order mode, carries a whopping 16.4% of the
power. For Hermite, c02 and c20 each have 8.2% of the power, which together are equivalent
to the c10 LG higher order mode.

A point to consider is how the distribution of higher order mode power varies as optic radius
of curvature changes, and with beam width. As the radius of curvature increases, the beam
becomes more focused towards the center of the optic, and visa versa. As shown in Figure
5, for optics with large radii of curvature compared to their incoming beam, little aberration
is found, and most of the power resides in the pure Gaussian beam. However, as the radius
of curvature decreases, more power is scattered into higher order modes.

Conversely, if the beam width is varied, this directly affects how close to the center the
beam is focused. Figure 6 illustrates this effect, as smaller beams propagate with less mode
coupling. Note that this graph was generated in Mathematica, in which the equation for c00
(Discussed in section 8) is used to vary ω(z).

At the moment, LG is not able to evaluate in Mathematica. Mathematica can only evaluate
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n m
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Figure 4: The distribution of coupling coefficients for propagation through a surface with
radius of curvature = 500mm. This was evaluated in Python for a perfect spherical equation.
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second order Taylor approximations (Discuessed in setion 8), which cannot be called a per-
fect sphere. However, this research has shown that there is virtually no difference between
a Z(x, y) function with a second order Taylor approximation and a function modeled as a
perfect sphere. This will be discussed further in section 11.

Using this information, after a Gaussian beam has propagated through a surface, a tolerance
can be constructed to find conditions in which the beam will stay Gaussian, and not scatter.
Less higher order mode coupling occurs when the ratio of beam size to optic size is smaller.

To illustrate this, the fraction of power in the pure Gaussian mode, |c00|2, can be taken and
plotted against both radius of curvature and beam width, which is shown in Figure 7. The
relationship between the ratio of beam width to optic size and the fraction of residual power
in the pure Gauss mode is outlined in this figure. This can ideally be used to find an optimal

Figure 5: The HG and LG Coupling coefficients as a function of R, the radius of curvature
of the optical surface. In both cases, the blue curves representing c00 are the pure Gaussian
mode of the beam. This was evaluated in Python for a perfect spherical equation.
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Figure 6: The HG coupling coefficients as a function of incoming beam width. The Radius
is fixed at 500mm. The blue curve illustrates the summation of all the curves.

configuration of beam width to lens curvature.

10 Analyzing Mode Mismatch

Quantifying mode mismatch is not a trivial task. It can be expressed as [10]:

MM = 1− |c00|2 (15)

In which MM is a measure of mode mismatch. Naturally, as MM → 0, the more purely
Gaussian the beam is. As MM → 1, the more coupling there is into higher order modes.
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Figure 7: The fractional power in the Gaussian mode after propagation through a lens. This
contour plot is generated by varying Radius of curvature and beam width
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Mode mismatch can be plotted in the same fashion as the fractional power in the previous
section. Figure 8 shows this. Again, the same trend shows that larger radii of curvature
relative to a given beam waist correspond to better mode match.

The original endeavor of this paper was to more accurately evaluate the mode mismatch
as it relates to an optical cavity, and finding the beam width with this model is more ef-
fective. As mentioned in section 8, the beam after propagation through a curved surface
is a superposition of all higher order modes with their respective power distributions. The
resulting intensity pattern can be used to find the width of the beam, and then compared
to the ABCD matrix approach.

Using the same configurations as the previous section, an intensity pattern can be generated
in Python. Since the fractional power distribution for this configuration is already known,
a superposition of higher order mode intensity patterns can be plotted. In Figure 8, the
intensity patterns are normalized. The higher order mode superposition is slightly distorted
compared to the pure Gaussian distribution.

This visualization can give an idea of how the beam width should be affected upon propaga-
tion through a surface that induces higher order mode coupling. The width, ω(z) is defined
by the position in which the intensity is 1

e2
of its maxmimum value [5]. Evaluating this

position can be done in Python. For the given configuration shown in section 10, the beam
width is shown in table 10, along with the width found from the ABCD matrix approach for
the same configuration. The beam width is distorted by ≈ 2µm.

Modal Coupling 0.35667 mm
ABCD Matrix 0.3590 mm

Table 3: Comparison of beam width after propagation through an optic with a radius of
curvature of 500mm. For modal coupling approach, this curvature, again, refers to the R in

Figure 8: Mode Mismatch as a function of radius of curvature of Z(R, x, y)
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Figure 9: The beam profiles and intensity curves for a pure Gaussian beam compared to a
LG modal coupling model evaluated in Python

Z(R, x, y). For ABCD matrix approach, f = 2R, so it is evaluated for a lens with 1000mm
focal length.

11 Future Steps

11.1 Using Different functions for Z(R, x, y)

There is impetus for evaluating a model that propagates through different surfaces of optics.
Since lens aberrations arise from the light near the edges of the optic refracting more than
the light towards the center, changing the function of curvature may create solutions to the
problem [2]. As a result, the next surface to evaluate in the integration is a parabolic surface.

As mentioned in section 8, Mathematica only evaluates for a Taylor approximation made to
the sphere

Z(R, x, y) =

(
1− x2 + y2

R2

)1/2

. As a result, it evaluates a seond order approximation given in equation 12 that is virtually
parabolic. However, this generates the exact same higher order mode distribution, and cou-
pling coefficient plot as a sphere does in Python. Since mathematica does not evaluate either
an infinite or finite surface integral of a sphere, the next option is to attempt to construct a
Taylor approximation to the evaluation in Python, and evaluate to infinity.

Problems may arise with this. As the code stands now, numerically evaluating the spherical
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integration with bounds of -1 to 1 takes about 15 - 30 seconds to complete for each coupling
coefficient for a given radius of curvature. Given that the integration takes a large number of
steps to evaluate the dblquad function, it was shown in Python that the larger the bounds,
generally, the longer the integration takes. Looping over an array of values to generate a
coupling coefficient vs. R plot takes much longer. It may not be efficient to evaluate to
infinity even with a Z surface function as a parabola.

Nonetheless, the next steps would be to define the function

Z(R, x, y) = R

(
1− x2 + y2

2R2

)
as the function to go in the exponential of the integration. Then, different bounds would
be tested to see what values to obtain. If the bounds of integration yield a numerical result
that is ¡ 1, encompass the entire beam diameter, and does not take very long to integrate,
then it may be a suitable solution to generating data for a parabolic surface.

A more advanced solution would be to take this code, and ssh into the LIGO computer
clusters so that the integration in general can be run faster.

Intuitively, different surfaces of curvature should produce different plots. It is expected that
the coupling coefficients vary as the function of Z(R, x, y) varies. There is likely a debugging
issue in the context of either the Python code or the Mathematica code that needs to be
addressed. Nonethless, the general trend that has already been generated in Python for
a spherical function aligns well with spherical aberration theory, and shows how coupling
coefficients behave with various lens curvatures.

11.2 Using Two Lenses

Aside from creating different functions for curvature, lens aberrations in general are miti-
gated through the use of multiple optics [2] [12]. In many high precision focusing optical
designs, a multitude of lenses are spaced precisely so that an aberration created by the light

Figure 10: A plot similar to Figure 4 generated in Mathematica, yet Z(R, x, y) is parabolic.
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propagating through the first lens can be restored through the second lens.

This may be true for Gaussian optics as well. As higher order modes are created by a lens
with a fair amount of curvature, propqgation through a second lens may recover those cou-
pled modes back into the pure Gaussian mode.

The first steps to analyzing this start simply. In the Python and Mathematica models, there
would be a situation in which a beam at a certain distance z propqgates through a convex
lens with a fixed front radius of curvature. The most immediate higher order mode is eval-
uated in the integration, meaning that for HG it would be either the c02 or c20 mode, and
for LG it would be c10. The power of this next higher order mode can be found by taking
its absolute value squared. Then, evaluating the propqgation at another distance z (repre-
senting the distance from the first lens to the second lens), the next higher order mode will
act as the beam propqgating through the second lens. The integration is then evaluated to
determine the coupling of that higher order mode back into the pure Gaussian mode (along
with how much it couples into other modes).

Since the integration is normalized, |cnmn′m′|2 for higher order modes back into the Gaussian
mode represents the fraction of the power that higher order mode had before propagation
through the lens. Therefore, the total fraction of power that gets coupled back into the pure
Gaussian mode can be traced back to how much was originally coupled into the higher order
mode. This method can then be done for each of the first few higher order modes, and the
power that is recoupled back into the pure Gaussian after a second lens propagation can be
accurately evaluated.

A concern in this method, is determining if the portion of the beam that is still purely
Gaussian after propagating through the first lens, couples into higher order modes after
propagation through the second lens more than higher order modes couple back into it. This
is a possible challenge when approaching a multi-lens model in the modal coupling method.

However, if this method yields results, and can be debugged so that it becomes applicable
to any surface function, there is a vast amount of analysis that can be done. As it stands,
higher order modes are a problem in LIGO interferometers, as they create noise in quantum
squeezing, and within the optical cavities. Generating a model that can accurately minimize
the coupling of higher order modes in its mode matching lenses can greatly improve LIGO’s
sensitivity.
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