Mode Mismatching Analysis \#beaminthehole

LIGO SURF 2022
Peter Carney
Shruti Maliakal, Dr. Rana Adhikari

Project Overview:

- Original project motivations
- Background on mode mismatch
- Thick lens analysis and lens aberrations
- Modeling with Gaussian beam mode coupling
- Future plans

Original Mission

- Phase Sensitive

Optomechanical Amplifier (PSOMA) experiencing mode mismatching.

- Test thick lens analysis.
- Consider lens aberrations creating higher order modes

Tabletop design

\#Beaminthehole

a)

b)

Through Thin and Thick

Thin lens

$$
\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)
$$

Thick lens

$$
\left(\begin{array}{cc}
1 & 0 \\
\frac{n^{\prime}-n}{R_{2}} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{d}{n^{\prime}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{n-n^{\prime}}{R_{1}} & 1
\end{array}\right)
$$

$(\because)(\because)(\because)(\because.) \cdots=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$

$$
\frac{A q_{1}+B}{C q_{1}+D}=q_{2}
$$

Results from Thick Lens Calculation

Lens Aberrations with Ray Tracing

\#Beaminthehole

Ray Tracing to Gaussian Beams

A purely Gaussian laser can scatter into Higher Order Modes.

This is the Gaussian version of lens aberrations.
\#Beaminthehole

Quick Math Behind Gaussian Beams

$$
u(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{\omega(z)} e^{\left(-i k \frac{x^{2}+y^{2}}{2 R(z)}-\frac{x^{2}+y^{2}}{\omega(z)}\right)} e^{i \psi(z)}
$$

Equations to get Hermite Gauss patterns
$u_{n m}=\left(2^{n+m-1} n!m!\pi\right)^{-1} \frac{1}{\omega(z)} e^{(i(n+m+1) \psi(z))} H_{n} \frac{\sqrt{2} x}{\omega(z)} H_{m} \frac{\sqrt{2} y}{\omega(z)} e^{\left(-i k \frac{x^{2}+y^{2}}{2 R(z)}-\frac{x^{2}+y^{2}}{\omega(z)}\right)}$
Equations to get Laguerre Gauss patterns
$u_{p l}=\frac{1}{\omega(z)} \sqrt{\frac{2 p!}{\pi(|l|+p)!}} e^{(i(2 p+|l|+1) \psi(z))}\left(\frac{\sqrt{2} r}{\omega(z)}\right)^{|l|} L_{p}^{|l|}\left(\frac{2 r^{2}}{\omega(z)^{2}}\right) e^{\left(-i k \frac{r^{2}}{2 q(z)}+i l \phi\right)}$

Meet the Families of Modes

Hermite Gauss Modes
Laguerre Gauss Modes

Just add them

$\begin{aligned} & \text { together } \\ & \text { \#beaminthehole }\end{aligned} c_{n m n^{\prime} m^{\prime}}=\iint_{-\infty}^{\infty} u_{n m} u_{n^{\prime} m^{\prime}}^{*} e^{(2 i k Z(x, y))} d x d y$

$$
Z(x, y)=\sqrt{R^{2}-x^{2}-y^{2}}
$$

We start with a pure
Gaussian beam.

$$
\mathrm{p} \& \mathrm{I}=0 \quad Z(x, y)=\sqrt{R^{2}-x^{2}-y^{2}}
$$

The first higher order mode.

$$
p^{\prime}=1, l^{\prime}=0
$$

A coefficient between 0 and 1

Pure Gaussian Beam Intensity Distribution

HOM Intensity Distribution

Hermite Gauss Coupling Coefficients

Laguerre Gauss Coupling Coefficients

Coupling Coefficients vs. Beam Width

Fixed Radius of curvature R at 500 mm

Coupling Coefficients vs. Z(x,y) Surface Radius of

 Curvature

Mode Mismatch vs. Z(x,y) Surface Radius of

 CurvatureMismatch \%

The Work Continues

- Further research on how mode mismatching affects quantum squeezing loss.
- Test different $Z(x, y)$ functions to see how different surfaces affect beams.
- Simulate some radius R , find the q parameter and compare with $A B C D$ matrix approach.
- Simulate a two lens system with integration method for mode matching losses.
- Find best parameters for mode matching with numerical integration.

- If work yields good results, try modeling for LIGO optics

References

[1] Yuntao Bai Gautam Venugopalan Kevin Kuns Christopher Wipf Aaron Markowitz Andrew R. Wade Yanbei Chen and Rana X Adhikari, A phase-sensitive optomechanical amplifier for quantum noise reduction in laser interferometers. Physical Review, (2020).
[2] Eric D. Hall, An introduction to Pound Drever Hall frequency stabilization Physical Review, (2001)
[3] Xinqian Guo Linbo Zhang Jun Liu Long Chen Le Fan Guanjun Xu Tao Liu Ruifang Dong Shougang Zhang, An automatic frequency stabilizated laser with herz-level linewidth Physcial Review, (2022)
[4] Kenneth Strain Andreas Freise Charlotte Bond Daniel Brown, Interferometer Techniques for Gravitational-Wave Detection Physical Review, (2015)
[5] Denton Wu, Automated Laser Frequency Re-Stabiization Physical Review 2017,(2018)
[6] K Huang H Le Jeannic J Ruaudel O Morin J Laurat, Microcontroller based Locking in optics Physical Review, (2014)
[7] https://www.liquidinstruments.com/products/integrated-instruments/ laser-lock-box-mokulab/
[8] Jenkins A Francis, Harvey E. White, Fundamentals of Optics (chp. 8-9). McGraw-Hill Inc. 1957
[9] Alex Abramovici, Chapsky Jake. Feedback Control Systems: A Fast-Track Guide for Scientists and Engineers, Kluwer Academic Publishers, 2000
[10]Peter Beyersdorf, "Thick Lenses and ABCD Formalism", Lecture notes, 2006.

Special thanks to: Shruti Maliakal, Aaron Markowitz, Dr. Christopher Wipf, Dr. Rana Adhikari, Dr. Jonathan Richardson

Wolfram
Mathematica

CALTECH
Student-Faculty Programs

INKSCAPE

