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Project Overview:

● Original project motivations

● Background on mode mismatch 

● Thick lens analysis and lens aberrations

● Modeling with Gaussian beam mode 

coupling

● Future plans
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Original Mission
● Phase Sensitive 

Optomechanical Amplifier 
(PSOMA) experiencing mode 
mismatching. 

● Test thick lens analysis. 

● Consider lens aberrations 
creating higher order modes
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Tabletop design
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Through Thin and Thick
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Rc = Beam front radius of 
curvature

w0 = Beam waist 

w(z) = Width of beam at some z 

position

ZR = Rayleigh range

7



8



Results from Thick Lens Calculation

At Cavity Beam Waist

Thin Lens: 0.37018mm
Thick Lens: 0.37634mm

Entering first mirror

Thin Lens: 0.54431mm
Thick Lens: 0.5475mm
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Lens Aberrations with Ray Tracing

#Beaminthehole
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Ray Tracing to 
Gaussian Beams
A purely Gaussian laser can 
scatter into Higher Order 
Modes.

This is the Gaussian version 
of lens aberrations.  

#Beaminthehole
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Quick Math Behind Gaussian Beams

Equations to get Hermite Gauss patterns

Equations to get Laguerre Gauss patterns
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Hermite Gauss Modes

n

Laguerre Gauss Modes

p

Meet the Families of Modes
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Just add them 
together
#beaminthehole

Z(x, y)
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We start with a pure 
Gaussian beam. 
p&l = 0

The first higher 
order mode.
 p’ = 1, l’ =0

A coefficient 
between 0 and 1
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Hermite Gauss Coupling 
Coefficients

n, m

Laguerre Gauss Coupling 
Coefficients

p, l
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Coupling Coefficients vs. Beam Width
Fixed Radius of curvature R at 500mm
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Coupling Coefficients vs. Z(x,y) Surface Radius of 
Curvature
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Mode Mismatch vs. Z(x,y) Surface Radius of 
Curvature

20



The Work Continues
● Further research on how  mode mismatching affects quantum squeezing loss. 

● Test different Z(x,y) functions to see how different surfaces affect beams. 

● Simulate some radius R, find the q parameter and compare with ABCD matrix approach.

● Simulate a two lens system with integration method for mode matching losses. 

● Find best parameters for mode matching with numerical integration. 

● If work yields good results, try modeling for LIGO optics

#beaminthehole
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