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1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) measures gravitational
waves and is one of the pioneering instruments which help detect black holes and neutron
star mergers. The instrument, or more accurately, the suspended mirrors used, is highly
susceptible to vibration noise. The third-generation upgrade, LIGO Voyager, is planned to
improve the sensitivity by an additional factor of two and halve the low-frequency cutoff to
10 Hz by reducing quantum radiation pressure and shot noise, mirror thermal noise, mirror
suspension thermal noise, and Newtonian gravity noise. The thermal vibrations (or thermal
noise) are nullified by installing a cryogenic cooling facility (Figure 1) which radiatively cools
the silicon test masses to 123 K.

Figure 1: Cryogenic cooling of suspended mirrors in the to-be Voyager upgrade

1.1 Background

Constancio et al. [1] theorized that the silicon test masses would require a high thermal
emissivity coating to increase the radiative coupling to its cold environment and effectively
dissipate the absorbed laser power. To this end, we wish to determine the emissivities of
various black coatings as a function of temperature and subsequently use the best emissivity
material for the Mariner (Voyager prototype) upgrade at the Caltech 40m Lab. This is done
by obtaining cool-down curves in a cryostat designed specifically for the purpose of emissivity
measurement. Using a simplified heat transfer model, the emissivity and corresponding
propagated uncertainty is extracted from the cool-down temperature data.
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1.2 Motivation

Running the experiment and obtaining the cool-down data is expensive and time-consuming,
with a time constant of several days. It becomes infeasible to run the experiments multiple
times and find the expected value of the emissivity. We thus run simulations prior to the
experiment and find the optimal experimental configuration and excitation, which gives us
emissivity with the least uncertainty, using Fisher Information Matrix analysis. The optimal
configuration and excitation input obtained will then be used in the experiment to get a
close to accurate measurement of emissivity.

The lab’s ongoing work includes making design changes to the cryostat, which would mini-
mize heat leaks into the system. It would allow the test mass to cool down to 123 K quickly
and reduce the thermal noise injected into the system to get a less uncertain cool-down
output. My project would complement this effort by theoretically determining which design
parameters contribute the most to the uncertainty in emissivity and even suggest changes in
their values for future design upgrades of the cryostat. It would also corroborate the design
changes already made and recommend what optimal excitation should be given to make the
system robust to noise. Further the same optimal experimental configuration and excitation
obtained as a result of this project can be used for emissivity tests of many key coating
materials for the LIGO Voyager upgrade.

2 The Cryostat

Figure 2: The cryostat
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Figure 3: A look into the cryostat experimental set-up

In our latest experiment, we use a thin wafer and not a bulk mass because it is easier to mass
produce wafers for numerous experiments at a low cost. Figure 2 shows a simplified system
diagram of the cryostat. A mechanical setup (see figure 3) is designed to hold the wafer in
place. We also add a heater (a heating lamp) to give the necessary optimal control input
from our Fisher Matrix analysis. It is also useful to heat the set-up after an experiment back
to room temperature. This helps reduces the experiment run-time. The notation used in
this report is as follows,

T1 Test mass temperature
T2 Inner shield temperature
Th Outer shield temperature
ϵ1 Test mass emissivity
ϵ2 Inner shield emissivity
ϵh Outer shield emissivity
Ah Total area of heat leak from the

inner shield to the outer shield
rh Effective radius of the heat leak area

F1→h Geometric view factor from the
test mass to the heat leak area

A1 Test mass surface area
A2 Inner shield surface area
Cp Specific heat of test mass
m Mass of silicon test mass
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2.1 Heat Model

Using radiative heat transfer equations as formulated in [2] and keeping geometric view
factors in mind, we get the following simplified model of our system,

mCp
dT1

dt
= σA1

 T 4
2 − T 4

1

1
ϵ1
+ A1

A2

(
1
ϵ2
− 1

) +
T 4
h − T 4

1

1
ϵ1
+ A1

Ah

(
1
ϵh

− 1
)
+ 1

F1→h
− 1

 , (1)

where we assume that that the geometric factor from the test mass to the inner shield
F1→2 ≈ 1. The first term corresponds to the cooling term by the cold inner shield, while the
second term corresponds to the heating term due to the heat leaks.

For our preliminary analysis we will consider only the steady state region of the cool-down
curve. Thus, the ϵ1, ϵ2, ϵh, T2 and Th can be taken as constant. Moreover, it is experimentally
observed that Th realises steady state around 200 K almost every time. T1 is the output,
and θ̄ = {ϵ1, ϵ2, ϵh, rh} denotes the parameter vector for our system.

Note that the parameters Ah and F1→h are combined in one parameter that is rh. It gives
us the radius of the effective circular hole causing the heat leak. Knowing rh one can find
out the corresponding Ah and F1→h.

3 Optimal System Identification

Figure 4: Frequency domain system with noise

3.1 Approach

The main question we want to answer how should our input signal xα look like to deter-
mine the transfer function poles and zeros with least uncertainty and robust to noise nα?
We choose to do a frequency domain analysis as the equations become algebraic for linear
systems. Once we obtain the optimal input or excitation we can back-calculate the transfer
function Hα of the system and determine the poles and zeros. Thus, we have identify the
system parameters.
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3.2 Fisher Information Matrix

Assuming that the measurement noise as Gaussian, the Fisher Matrix is constructed from the
likelihood function with the objective of maximising the curvature (or minimising uncertainty
in output) as derived in [3]. The output measurement,

yα = Hαxα + nα; α = 1, 2, · · · , N,

where Hα is the system model, xα is the input and nα is the noise corresponding to the αth

frequency. The Fisher Matrix is given by,

Fij = − ∂2[lnL]
∂θiθj

∣∣∣∣
θ̄

,

=
∑
α

1

|nα|2
Re

[
∂ŷ∗α
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∂ŷα
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]∣∣∣∣
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,

=
∑
α

1

σ2
Hα

Re

[
∂Ĥ∗

α
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∂Ĥα

∂θj

]∣∣∣∣∣
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,

where Ĥα denotes the estimate of the system model, which is dependant on the parameter
prior θ̄ we choose. Here σHα = |nα|

|xα| , depending both on noise and excitation amplitudes.
The Cramer-Rao bound gives a lower limit on the covariance matrix C and relates it to the
Fisher Matrix. For unbiased parameters,

C ≥ F−1,

where the inequality is understood to be element-wise. Our objective is to select those
parameters and input which maximize the Fisher information (and thus minimize variance-
covariance). We do this by either maximising the determinant of the Fisher Matrix or
minimising the variance of ϵ1 as that is the parameter of major interest.

4 Optimal Control Input

4.1 Cryostat Transfer function

Consider additional power input by a lamp shining on our test mass and modifying equation
(1) we get,

mCp
dT1

dt
= σA1

 T 4
2 − T 4
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T 4
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+ 1
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+ P (t), (2)

where P (t) is the heat power input as a function of time. We will linearize this system about
the steady state equilibrium and make a bode plot (figure 5).
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The transfer function of the linearized system is calculated as the Laplace transform of the
ratio of the output T1(t) to the heat input P (t),

HT1(fα) = L
(
T1(t)

P (t)

)
(3)

=
1

C0fα + 4(C1 + C2)T ◦
1
3 (4)

where, fα denotes the frequency variable, T ◦
1 is the equilibrium temperature of the test mass

and the constants C0, C1 and C2 are given below,
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1
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1
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)
1

F1→h

− 1
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Figure 5: Bode plot of the heat model transfer function

As we can see the cross-over frequency is very low, around 10−5 Hz. This means that the
time constant of our system is ≈ 27 hours. Any frequency above 10−5 Hz will be damped.
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We will have our optimal frequency search region around this region. Intuitively, we can
reason that it is not possible to extract information faster than the time constant of the
system.

4.2 Frequency Domain Analysis of Linearized System

[3] provides a framework for finding optimal excitation using Fisher Matrix for a two pa-
rameter linear system. We started out with finding one optimal frequency, as done in [3],
and then proceeded to use two frequency input signal. We use all four parameters to build
a 4× 4 Fisher Matrix for our linearized system given by equation (2).

4.2.1 One frequency input signal

Refer figure 6 which shows the variation of the determinant of the Fisher Matrix vs the
frequency of the input signal. We see that the maxima occurs around optimal frequency of
the order 10−5 Hz. This observation is consistent with the pole frequency of the transfer
function of our linearized system (3), as seen in the bode plot (figure 5). In this analysis we
assume white noise (or constant noise amplitude for all frequencies). The plot was generated
by running an algorithm which calculated each element of the Fisher Matrix.

Figure 6: det (F ) vs frequency f1 for a one frequency input signal

4.2.2 Two frequency input signal

Let us see what would happen if we make our signal more complex by adding another
frequency. We can plot the determinant contours on a graph and see at what combination
of frequencies the maxima occurs. These frequencies would be our optimum frequencies
which give minimum uncertainty in parameters. We observe in our result (figure 7) that the
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optimum frequencies are degenerate and of the order 10−5 Hz. Thus, we obtained optimum
frequencies are close to the time constant of the system, as predicted.

Figure 7: Contours of det (F ) with both frequencies on the axes

A few points to note:

• Degeneracy occurs because we assigned the same signal and noise amplitudes to both
the frequencies. This means we assigned the same σα to both the frequencies. Assigning
a different σα would give us a non degenerate result.

• We assumed our noise to be white noise. Degeneracy is lost if we assume frequency
dependant noise.

• Assigning different power or amplitudes to the signal of the two frequencies will also
give a non-degenerate optimum result.

We can conclude that considering two input frequencies in the Fisher analysis gives us no
new information (as compared to one input frequency) unless we consider that the system
noise is frequency dependent. Hence, determining this frequency dependence is an important
consideration for future work.

It is evident that there is a problem here. Practically, assigning signal amplitudes or deciding
σα for the various frequencies is time intensive. There are many combinations of amplitudes
possible for the signal and the noise for each frequency. Moreover, giving a higher magnitude
of amplitude to a particular frequency automatically gives it more importance and can end
up being the optimal frequency. The logic would become circular. Therefore, we want a
method that can give us both the amplitude (or power) and the optimal frequency together,
while maximizing the Fisher Information Matrix.
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5 Power Spectrum Optimization

This method involves distributing some fixed total power among discrete frequencies within
a particular range. Finding optimal frequencies by maximizing the determinant of the Fisher
Matrix involves choosing the excitation amplitude of the signal beforehand (when assigning
the standard deviation for that frequency). The power spectrum optimization algorithm
introduced in [4] gives us information about what the optimum power distribution should
be. The main advantage of this algorithm is that it can constrain the total power and also
find the optimal excitation amplitude for a range of frequencies.

5.1 Dispersion Function

Dispersion function ν(χ,Ωk), as defined in [4], for a given input power spectrum χ(Ω) =
(|U(1)|2, · · · , |U(F )|2), with

∑F
k=1 |U(k)|2 = P is,

ν(χ,Ωk) = trace([F(χ)]−1fi(Ωk)),

with F(χ) the information matrix resulting from the design χ(Ω), fi(Ωk) the informa-
tion matrix corresponding to a single frequency input with a normalized power spectrum
|U(k)|2 = P, and Ωk the frequency.

To intuitively understand the meaning of this function, we will look at the one parameter
case. The dispersion function then can be explained as a scalar measure of the covariance for
the given input power spectrum with respect to the covariance for a single frequency input
with normalized (concentrated) power spectrum.

One of the properties of the dispersion function is that the maximum of the dispersion
function over the frequency grid is larger than or equal to the number of parameters. Thus
our aim is to minimize the dispersion function and make it converge to the number of
parameters.

In a way it can be understood how bad the covariance of our system is, at the estimated
parameters, in comparison to the covariance when the power is concentrated at one frequency.
It encourages us to find a power distribution which minimizes the covariance instead of
concentrating the power at one frequency (which may or may not be one of the optimal
frequencies).

Another way of expressing the dispersion function, as done in [4],

ν(χ,Ωk) =
2σ2

G(Ωk, θ̄)P

σ2
U(k)|G(Ωk)|2 + σ2

Y (k)− 2Re(σ2
Y U(k)Ḡ(Ωk))

.

This can be interpreted as the ratio of the variance of the system frequency response, calcu-
lated with the estimated parameters, to the noise power of the measurements at the frequency
Ωk. This makes sense as we want to minimize the variance of the frequency response (which
encodes the system parameters) with respect to a particular noise power.
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5.2 Algorithm

• Step 1: Select a set of frequencies F = {Ω1, · · · ,ΩF} within our band of interest. The
input power is distributed equally amongst these F frequencies (called design χ0).

• Step 2: Set i = i + 1 in the numerical algorithm and calculate ν(χi,Ωk) for k =
1, · · · , F .

• Step 3: Let nθ be the number of parameters. Compose new design,

χi+1(Ωk) = χi(Ωk)
ν(χi,Ωk)

nθ

for k = 1, · · · , F .

• Step 4: If max(ν(χi,Ωk) − nθ) < ϵ with a sufficiently small ϵ and Ωk ∈ F, then the
optimal design is found. Otherwise, we return to Step 2.

5.3 Results

We analyse the evolution of the power spectrum optimization algorithm for our linearized
system given by equation (2). For iterations 1, 2, 5, 10 and 100 we obtain the results
shown in figure 8. It can be observed with each iteration, the power spectrum becomes more
and more concentrated around a maxima. After 100 iterations about 5W of the power is
assigned to a frequency of the order 10−5 Hz. This result also matches our initial Fisher
Matrix optimization analysis. We see the advantage of this method, as it spits out the
optimal power distribution for the amplitudes of a range of frequency input signals.

6 Optimal Experimental Configuration

We try to see the trend of var(ϵ1) or the variance of ϵ1 and det (F ) or the determinant of
the Fisher Matrix with respect to various parameters (figure 9). The frequency used in this
analysis is the optimal frequency obtained in the single frequency Fisher Matrix analysis.

We see that the variance of ϵ1 does not change much with parameters ϵ2 and ϵh. However,
it does change a lot with rh, which is the radius of the heat leak aperture. The variance
increases with an increase in the radius, which is quite intuitive.

The trends for the determinant of the Fisher Matrix are hard to explain intuitively. More
work can be done in validating these results. However, we do see the determinant attaining
a maxima with parameters ϵ1, ϵ2 and ϵh being equal to 1. This means that information is
maximized when the system components have maximum radiative coupling. We also note
the determinant is max for the smallest value of rh. We can thus say, that heat leaks add
more variation in our system and make us less certain about the parameter estimates.
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Figure 8: Power spectrum optimization for 1, 2, 5, 10 and 100 iterations respectively (from
left to right)
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Figure 9: Variation of var(ϵ1) and det (F ) with various parameters
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7 Future work

Some ideas that can be worked on in the future are the following:

1. Understanding the mathematics of the Power Spectrum Optimization algorithm. An-
swering questions like: What is being minimized? Why are the answers not exactly
equal to the Optimal Control Frequency analysis?

2. Intuitively explaining trends observed in Optimal Experimental Configuration.

3. Estimating or modelling the noise in our system from various sources (ambient fluctu-
ations of temperature, measurement noise, etc.).

4. Time-domain analysis of our original nonlinear system without assuming steady state
conditions. As frequency domain is only for LTI systems, the evaluated optimal fre-
quencies are still impractical.

5. A different problem can be posed: How do we get maximum information out of the
system within a fixed amount of time?
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