

Fisher Information Analysis for Emissivity Estimation

Hiya Gada LIGO SURF 2022 Mentors: Radhika Bhatt, Rana Adhikari, Christopher Wipf

1

Flow of the Presentation

- Motivation
- Our system The Cryostat
- Optimal System Identification
- Fisher Information Matrix
- Optimal Control Input
- Power Spectrum Optimization
- Optimal Experimental Configuration
- Future work
- Acknowledgement and References

Motivation

Motivation

Objective	Mariner (Voyager prototype) will have reduced thermal noise
	High emissivity coating will to increase the radiative coupling to its cold environment and dissipate laser power
	Estimating coating emissivity with least uncertainty for various materials

Problems	Time-constant for cool down is over a day
	Experiment can't be run multiple times to get expected value

Solution Find and implement optimal experimental design and input get most certain emissivity measurement	to
---	----

The Cryostat

Optimal System Identification

Main Question:

LIGO

How should our input signal look like to determine the transfer function poles and zeros with least uncertainty and robust to noise?

- Frequency domain makes analysis simpler for linear systems
- Back calculate parameters from poles and zeros
- Hence, identify system

Given model: y = mx + cOnly two measurements allowed What x values should we measure at to estimate m and c?

When x values are farthest apart!

Fisher Information Matrix

Optimal Control Input

The linearized system:

$$mC_{p}\frac{dT_{1}}{dt} = \sigma A_{1} \left[\frac{T_{2}^{4} - T_{1}^{4}}{\frac{1}{\epsilon_{1}} + \frac{A_{1}}{A_{2}}\left(\frac{1}{\epsilon_{2}} - 1\right)} + \frac{T_{h}^{4} - T_{1}^{4}}{\frac{1}{\epsilon_{1}} + \frac{A_{1}}{A_{h}}\left(\frac{1}{\epsilon_{h}} - 1\right) + \frac{1}{F_{1 \to h}} - 1} \right] + P(t),$$

$$\dot{T}_{1}(t) = AT_{1}(t) + P(t)$$

The transfer function:

$$H_T(f_{\alpha}) = \mathcal{L}\left(\frac{T_1(t)}{P(t)}\right)$$

Things to note:

- The cut-off frequency is in 10^{-5} Hz
- This corresponds to ~27 hours
- Any frequency above 10^{{-5}} Hz will be damped
- We must analyse around this region

8

Optimal Control Input

For a one frequency input signal:

For a two frequency input signal:

- Assigning same amplitude and noise to both frequencies gives us degenerate optimal frequencies.
- Considering frequency-dependant noise and not white noise will give us non-degenerate frequencies
- Assigning different amplitudes or power to the two frequencies will also give non-degenerate frequencies

Power Spectrum Optimization

Some constant for total power

with $\sum_{k=1}^{F} |U(k)|^2 = \mathfrak{P}$

Input power spectrum

$$\chi(\Omega) = (|U(1)|^2, \cdots, |U(F)|^2)$$

Where frequencies are: Ω_k for $k = 1, \dots, F$

Algorithm:

Distribute total input power equally over a set of discrete frequencies in our band of interest: $\mathbb{F} = \{\Omega_1, \cdots, \Omega_F\}$

Set i = i + 1 in the algorithm and for the current IPS, calculate the dispersion function: V

$$\gamma(\chi_i,\Omega_k)$$

If $\max(\nu(\chi_i, \Omega_k) - n_\theta) < \epsilon$ then terminate, otherwise return to Step 2

Power Spectrum Optimization

Optimal Experimental Configuration

Future Work

- Understand the mathematics of the Power Spectrum Optimization algorithm. Answer questions like: What is being minimized? Why are the answers not exactly equal to the Optimal Control Frequency analysis?
- Intuitively explain trends observed in Optimal Experimental Configuration
- Estimate or model the noise in our system from various sources (ambient fluctuations of temperature, measurement noise, etc.)
- Time-domain analysis of our original nonlinear system without assuming steady state conditions. Frequency domain is only for LTI systems. Present optimal frequencies are still impractical.
- A different problem can be posed: How do we get maximum information out of the system within a fixed amount of time?

Acknowledgement and References

I would like to thank my mentors Radhika Bhatt, Rana Adhikari and Christopher Wipf their guidance and support. I would also like to acknowledge the LIGO SURF program and NSF for giving me the opportunity to collaborate with LIGO scientists on such a large-scale project.

References

- ¹M. Constancio Jr, R. X. Adhikari, O. D. Aguiar, K. Arai, A. Markowitz, M. A. Okada, and C. C. Wipf, "Silicon emissivity as a function of temperature", International Journal of Heat and Mass Transfer 157, 119863 (2020).
- ²E. D. Hall, "Fisher matrix methods for transfer function measurement", ligo (2015).
- ³R. Pintelon and J. Schoukens, *System identification: a frequency domain approach* (John Wiley & Sons, 2012).
- ⁴J. Tellinghuisen, "Statistical error propagation", The Journal of Physical Chemistry A **105**, 3917–3921 (2001).
- ⁵D. Wittman, "Fisher matrix for beginners", Technical report, UC Davis.
- ⁶Y. A. Çengel, *Heat transfer: a practical approach*, McGraw-Hill series in mechanical engineering (McGraw-Hill, 2003) Chap. 12. 14