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1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) measures gravitational
waves and is one of the pioneering instruments which help detect black holes and neutron
star mergers. The instrument, or more accurately, the suspended mirrors used, is highly
susceptible to vibration noise. The third-generation upgrade, LIGO Voyager, is planned to
improve the sensitivity by an additional factor of two and halve the low-frequency cutoff to
10 Hz by reducing quantum radiation pressure and shot noise, mirror thermal noise, mirror
suspension thermal noise, and Newtonian gravity noise. The thermal vibrations (or thermal
noise) are nullified by installing a cryogenic cooling facility which radiatively cools the silicon
test masses to 123 K.

1.1 Background

Constancio et al. [1] theorized that the silicon test masses would require a high thermal
emissivity coating to increase the radiative coupling to its cold environment and effectively
dissipate the absorbed laser power. To this end, we wish to determine the emissivities of
various black coatings as a function of temperature and subsequently use the best emissivity
material for the Mariner (Voyager prototype) upgrade at the Caltech 40m Lab. This is done
by obtaining cool-down curves in a cryostat designed specifically for the purpose of emissivity
measurement. Using a simplified heat transfer model, the emissivity and corresponding
propagated uncertainty is extracted from the cool-down temperature data.

1.2 Motivation

Running the experiment and obtaining the cool-down data is expensive and time-consuming,
with a time constant of several days. It becomes infeasible to run the experiments multiple
times and find the expected value of the emissivity. We thus run simulations prior to the
experiment and find the optimal experimental configuration and excitation, which gives us
emissivity with the least uncertainty, using Fisher Information Matrix analysis. The optimal
configuration and excitation input obtained will then be used in the experiment to get a
close to accurate measurement of emissivity.

The lab’s ongoing work includes making design changes to the cryostat, which would mini-
mize heat leaks into the system. It would allow the test mass to cool down to 123 K quickly
and reduce the thermal noise injected into the system to get a less uncertain cool-down
output. My project would complement this effort by theoretically determining which design
parameters contribute the most to the uncertainty in emissivity and even suggest changes in
their values for future design upgrades of the cryostat. It would also corroborate the design
changes already made and recommend what optimal excitation should be given to make the
system robust to noise. Further the same optimal experimental configuration and excitation
obtained as a result of this project can be used for emissivity tests of many key coating
materials for the LIGO Voyager upgrade.
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2 The Cryostat

Figure 1: The cryostat

In our latest experiment, we use a thin wafer instead of a bulk mass because it is easier to
mass produce wafers for numerous experiments at a low cost. A new mechanical setup (see
figure 1) is designed to hold the wafer in place. We also add a heater (a heating lamp) to
give the necessary optimal control input from our Fisher Matrix analysis. It is also useful to
heat the set-up after an experiment back to room temperature.

The parameters of our experiment, especially the geometric view factor, is modified and used
for further simulations. The notation used in the report is the same as that used in Interim
Report 1.

3 Steady State Excitation

We modify the original experiment by applying a heat input in a particular interval when
the components have reached steady state. We assume the other temperatures (T2 and Th)
do not vary a lot during the excitation because of the system’s huge time constant (hence,
steady state).

We also introduce a new parameter called T ◦
1 which will be the temperature of the test mass

immediately after the excitation stops (see figure 2). This user-defined parameter allows us
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Figure 2: Rectangular excitation at steady state

to begin our analysis after the point T1 = T ◦
1 and conveniently ignore prior transient data.

Thus, there is also no need to model the heat input as long as we reach the temperature T ◦
1

fairly quickly. We can now analyse the cool down curve after the excitation assuming steady
state T2 and Th.

3.1 Time Domain Analysis

The time domain analysis takes the output to be T1 and the parameters as θ̄ = {T ◦
1 , ϵ1}.

The observations/measurements are taken at every time step, over which it is summed.

Fij =
∑
t

1

σ2
T

(
∂T1

∂θi

∂T1

∂θj

)
, (1)

where σT is assumed to be a constant (constant excitation and noise). We get a 2× 2 Fisher
matrix which we invert to get the covariance matrix. The term corresponding to (ϵ1, ϵ1) is
minimized over different T ◦

1 and ϵ1 values to find the optimal experimental configuration.
No control input is considered as our analysis starts at T1 = T ◦

1 .

3.2 Results

Numerically this is done by making a Fisher matrix grid, i.e., elements of a Fisher matrix
are calculated at every combination of (T ◦

1 , ϵ1). A disadvantage of this method is that it
is computationally intensive, but it is still explored as we don’t have an explicit analytical
function of the Fisher matrix to optimize.
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Figure 3 shows the contour plot of the (ϵ1, ϵ1) term, the variance of ϵ1, in the covariance
matrix (C = F−1).

Figure 3: Variation of variance ϵ1 for different combinations of ϵ1 and T ◦
1

We see that for a particular value of ϵ1, uncertainty increases with T ◦
1 value. Thus, we want

the lowest temperature T ◦
1 possible. It shows the way in which we have set-up the experiment

is not very useful, as the most ideal result is to not provide any heat excitation at all.

4 Time Domain Analysis of Linearized System

We linearize our system about the equilibrium test mass temperature as done in Interim
Report 1,

Ṫ1(t) = AT1(t) +Bu(t) (2)

where, u(t) is our heat input. The parameters are encapsulated in A. For our system B = 1.
We solve for T1 using Laplace transform,
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L{Ṫ1(t)} = L{AT1(t) +Bu(t)}
sT1(s)− T ◦

1 − AT1(s) = BU(s),

T1(s) =
BU(s)

s− A
+

T ◦
1

s− A
,

T1(t) = L−1
{BU(s)

s− A

}
+ T ◦

1 e
At.

We see the first term of the solution has the heat input along with the system parameter A.
We can conclude that solving for the Fisher matrix, by differentiating T1 by parameters {θi},
will include the excitation terms parameters (amplitude and frequency of the input signal)
as well. Thus, we were initially wrong about the control input not affecting the covariance
matrix.

Time-domain analysis should indeed give us an optimal control input. The results would be
the same as those obtained using frequency domain analysis, as we are analysing output of
the same system, just in a different domain. For a linear system, solving the Fisher Matrix
in the frequency domain becomes algebraic and therefore easier than solving in the time
domain. Future work involves analysing this method particularly for the non-linear form of
our system without assuming any steady state conditions.

5 Frequency Domain Analysis of Linearized System

[2] provides a framework for finding optimal excitation using Fisher Matrix for a two pa-
rameter system. We started out with finding one optimal frequency, as done in [2], and got
a nonzero determinant for the Fisher Matrix. We also observed that the optimal frequency
matched the time constant of our system (see Figure 4).

5.1 Optimal excitation

We first do an analysis for a two frequency system with the same standard deviation assigned
to both the frequencies. Figure 4 shows how the determinant varies for different frequency
values. We see that the optimal set of frequencies are degenerate and this is because we
have given them the same or constant standard deviation (independent on frequency). This
would mean that for white noise injected in the system, the excitation amplitudes of the
frequencies are the same. We get non-degenerate optimal frequencies if we divide the total
power between the two frequencies unequally. This tells us that that optimal input powers
need to be considered alongside optimal frequencies.

5.2 Optimal experimental configuration

Using the optimal frequencies obtained in the previous analysis, we find the system param-
eters which maximize the determinant of the Fisher Matrix.
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Figure 4: Variation of det(F ) with signal frequencies

Figure 5 shows that for a particular value of ϵ1, we see that determinant is maximum at least
value of ϵ2. There is a trade-off between getting good radiative coupling by having a large
ϵ2 and a lesser uncertainty in ϵ1 by having a small ϵ2.

6 Power Spectrum Optimization

This method involves distributing some fixed total power among discrete frequencies within
a particular range. Finding optimal frequencies by maximizing the determinant of the Fisher
Matrix involves choosing the excitation amplitude of the signal beforehand (when assigning
the standard deviation for that frequency). The power spectrum optimization algorithm
introduced in [3] gives us information about what the optimum power distribution should
be, It can be used constrain the total power and also find the optimal excitation amplitude
for a range of frequencies. However, these results should still agree with our Fisher Matrix
analysis.

6.1 Dispersion Function

Dispersion function ν(χ,Ωk), as defined in [3], for a given input power spectrum χ(Ω) =
(|U(1)|2, · · · , |U(F )|2), with

∑F
k=1 |U(k)|2 = P is,

ν(χ,Ωk) = trace([F(χ)]−1fi(Ωk)),

with F(χ) the information matrix resulting from the design χ(Ω), fi(Ωk) the informa-
tion matrix corresponding to a single frequency input with a normalized power spectrum
|U(k)|2 = P, and Ωk the frequency.
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Figure 5: Variation of det(F ) for different ϵ1 and ϵ2

To intuitively understand the meaning of this function, we will look at the one parameter
case. The dispersion function then can be explained as a scalar measure of the covariance for
the given input power spectrum with respect to the covariance for a single frequency input
with normalized (concentrated) power spectrum.

One of the properties of the dispersion function is that the maximum of the dispersion
function over the frequency grid is larger than or equal to the number of parameters. Thus
our aim is to minimize the dispersion function and make it converge to the number of
parameters.

In a way it can be understood how bad the covariance of our system is, at the estimated
parameters, in comparison to the covariance when the power is concentrated at one frequency.
It encourages us to find a power distribution which minimizes the covariance instead of
concentrating the power at one frequency (which may or may not be one of the optimal
frequencies).

Another way of expressing the dispersion function, as done in [3],

ν(χ,Ωk) =
2σ2

G(Ωk, θ̄)P

σ2
U(k)|G(Ωk)|2 + σ2

Y (k)− 2Re(σ2
Y U(k)Ḡ(Ωk))

.

This can be interpreted as the ratio of the variance of the system frequency response, calcu-
lated with the estimated parameters, to the noise power of the measurements at the frequency
Ωk.

This makes sense as we want to minimize the variance of the frequency response (which
encodes the system parameters) with respect to a particular noise power.
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6.2 Algorithm

• Step 1: Select a set of frequencies F = {Ω1, · · · ,ΩF} within our band of interest. The
input power is distributed equally amongst these F frequencies (called design χ0).

• Step 2: Set i = i + 1 in the numerical algorithm and calculate ν(χi,Ωk) for k =
1, · · · , F .

• Step 3: Let nθ be the number of parameters. Compose new design,

χi+1(Ωk) = χi(Ωk)
ν(χi,Ωk)

nθ

for k = 1, · · · , F .

• Step 4: If max(ν(χi,Ωk) − nθ) < ϵ with a sufficiently small ϵ and Ωk ∈ F, then the
optimal design is found. Otherwise, we return to Step 2.

6.3 Toy Problem

We use the example in [2] to verify our algorithm with the results in the paper. The transfer
function is given as,

G(s) =
k

1 + s
p

The total power is taken to be 1 kW and is initially distributed equally among 50 frequencies
F = {0, · · · , pest} where pest = 350 Hz is the initial estimate or prior on p. The prior on k is
given by kest = 3.2 mA/pm.

Figure 6: Power spectrum optimization

Figure 6 shows us how the power is distributed amongst various frequencies. We see the power
is maximum at a particular optimal frequency value of 242.86 Hz. The Evan Hall analysis
in [2] gives us the optimal frequencies as pest/

√
3 = 202.07 Hz and pest/2 = 247.48 Hz to

minimize the determinant and the (p, p) element of the covariance matrix, Σ, respectively.
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Figure 7: Variation of det(Σ) with number of iterations

Thus the result we obtained using this algorithm is somewhere between the two minimization
objectives we want.

Figure 7 shows us how the algorithm ensures minimization of det(Σ) with each iteration.
This meets our ultimate objective.
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