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Disturbances in the curvature of spacetime from the coalescence of binary black holes can be
probed by the gravitational waves of radiation emitted by these sources and recorded by Advanced
LIGO and Virgo. The merger of such objects allows us to test Einstein’s theory of general relativity
in the regime of strong and highly dynamical gravity - specifically, the newly formed black hole rings
down in a series of quasinormal modes, whose frequencies and damping rates are fully predicted
by general relativity. We focus on the ringdown of the remnant black hole, implementing ringdown
analysis in the time domain. We demonstrate the ability to fit and recover higher order modes of
the ringdown within the simulated IMR signal. Possible deviations of the frequencies and damping
times of the ringdown may point to new physics beyond general relativity, such as quantum gravity
that we are not yet familiar with.
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I. MOTIVATION

Gravitational wave (GW) signals from compact binary
coalescences (CBC) provide crucial information to under-
stand what remains of the remnant black hole (BH) and
allow us to test general relativity (GR) in the regime of
strong and highly dynamical gravity.

Binary neutron stars (BNS), black hole-neutron star
(BHNS), and binary black holes (BBH) are the three
main classes of detectable CBCs from our current
ground-based detectors. Future detectors such as LISA
will allow us to study more types of CBCs. More specif-
ically, we will look at BBH merger events. The data
from BBH mergers come from real events, but are sim-
ulated to better understand our current models and re-
fine our analysis techniques. During a BBH coalescence,
there are 3 stages: the inspiral, merger, and ringdown
(IMR). The remnant of merged BHs is a single perturbed
BH with a GW waveform characterized as a set of com-
plex frequencies and damping times known as quasinor-
mal modes (QNMs), which are unambiguously predicted
by GR. The gravitational radiation from this remnant is
called the ringdown phase [1].

BH ringdown is an effective probe of GR in the strong
field, notably the “no-hair theorem” (NHT). Detections
of deviations from GR in the form of violations of NHT
can point to physcis beyong GR. We model the ringdown
to be a linear superposition of damped sinusoids,
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where l andm index the angular modes, n is the overtone,
A is the amplitude of the waveform, τ is the damping
time, and f is the frequency (see FIG. 1). Compactly,
the ringdown is a set of complex frequencies, ω,

ω = 2πf + i/τ, (2)

determined by the nature of the remnant black hole [2].
The dominant quasinormal mode in GR is recognized

as (220), where l = 2, m = 2, and n = 0. This mode
displays the highest frequency and is the least damped,
which we label as the fundamental (22) mode. Higher or-
der modes (HOMs) of QNMs are the modes with smaller
amplitudes than the dominant (22) mode: (330), . . . ,
(440).
Higher order modes (HOMs) that have a radial mode

n > 0 are referred to as overtones. Overtones are the
QNMs with faster damping times than n = 0 [3]. In pre-
vious data analysis, the inclusion of overtones was omit-
ted which led to loss of signal content. That is to say,
the inclusion of overtones is important to extract the pa-
rameters of the signal more accurately [4] and further the
field of black hole spectroscopy.
The GW ringdown frequencies and damping times re-

veal the final mass and spin of the merged BH. The
frequencies for a Kerr black hole do not depend upon
its dynamical past, but the amplitudes of the ringdown
do. This leads to the discussion of the NHT. The NHT
states that mass and spin are the only two properties
of Kerr BHs in GR. Therefore, they uniquely determine
each flmn and τlmn. We can test the NHT with the data
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collected during previous and future runs of GW detec-
tors [3].

FIG. 1. Example of a singular damped sinusoidal QNM. T
is the period, Q is the quality factor, and e−t/τ is the expo-
nential decay. By setting t = τ , we can see the quality factor
will be ∼ 2. When adding multiple QNMs, the equation will
result in a linear superposition of damped sinusoidal oscilla-
tions, as seen in Eqn. 1.

II. APPROACH AND METHODS

Recovering higher order QNMs is a powerful way to
test Einstein’s theory of GR. This proves to be more dif-
ficult once passing the dominant angular mode, (l = m =
2). We will use real GW signals from the third LIGO-
Virgo observing run (O3), as well as simulated data. The
simulated data will be analyzed in the time domain.

The framework for this research is based on work done
by Maximiliano Isi and Will Farr, who analyzed ring-
downs not in the frequency domain, but in the time do-
main. However, this approach demands truncating the
GW signal at a specific time, which is difficult to handle
with the usual LIGO-Virgo analysis techniques. Instead,
it calls for special treatment in the time domain, or an
equivalent nontrivial procedure in the frequency domain
[3, 5–8]. We chose to work with the former and use the
RINGDOWN software package [5].

Using the RINGDOWN software package, we are
able to produce simulated ringdowns that are consistent
with GR. The simulated ringdown is a ‘ringup-ringdown’
where the ringdown is symmetrical to the ringup. This
does not correspond to real astrophysical events that have
been detected.

Making use of the IMRPhenomXP and IMRPhenomX-
PHM approximants [9], we also simulate a realistic wave-
form that takes arguments of mass and spin of the two
component BHs in the binary. By truncating this signal
to show only what happens immediately after merger, we
can use this simulated waveform for our various ringdown
analyses.

Using this time domain approach to analyze the ring-
down waveform, it is necessary to be able to recover the
higher order modes from a signal. We begin by using a
simulated signal with IMRPhenomXP [9] approximant.
From this, we can use a curve fitting method to identify
QNMs. The reason for the curve fit approach is to com-
putationally identify different modes rather than identi-
fication of various modes by eye. We implement curve fit
to show that the signal does truly contain the expected
modes and that we are capable of recovery (in the IMR-
PhenomXP case we only recover the 22 mode since that
is the only mode XP includes).
Once establishing that the 22 mode can be recovered

along with some of its overtones, we advance to using the
IMRPhenomXPHM [9] approximant which includes the
addition of higher modes (21, 22, 32, 33, 44). This is our
primary goal, to recover HOMs of a simulated waveform
to further our confidence when applying this method to
real GW data.

III. RESULTS

When observing the behavior of higher order QNMs
we note that with increasing modes comes higher fre-
quencies, lower amplitudes, and shorter damping times.
By varying the mass and spin parameters (which result in
specific frequencies and damping times of the oscillation),
we can note the changes of the waveform. Keeping this in
mind, we then have the option to vary other parameters
(such as duration of the signal and location) to create a
variety of waveforms. This allows us to have a sense of
how the waveform should look with different parameters.
We begin by simulating a noiseless, time-domain wave-
form to see how different angular modes and overtones
behave.
For these simulated post-merger events, we are able to

specify the angular modes, l and m, as well as the over-
tone, n. In return, we have access to the frequecies and
damping times of different modes and overtones [10]. The
primary noiseless waveforms are simulated to analyze the
behavior of the ringdown oscillations alone.

A. Complex Frequencies and Damping Times

As previously stated, all QNMs have their own distinct
frequencies and damping times that are derived directly
from the mass and spin of the remnant BH. With these
frequencies and damping times, we can plot them against
respective values of χ ranging from 0-1 (see FIG. 7-9).
Analyzing the plots, we can see that as by increasing

multipoles, their frequency and Q factor is climbing. We
can also note that in each leftmost plot, the frequencies
of each overtone are spread at χ = 0. The frequencies
and damping times diverge towards infinity at χ = 1, but
never reach due to the expectation spins of astrophysical
BHs (χ < 1).
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B. Dominant Mode and Overtones

When analyzing the fundamental (220) mode, we un-
derstand why this is labeled the dominant mode. This
mode can be more easily recovered due to how ‘loud’ it
is compared to subdominant modes. Berti et al. [11]
showed that the ringdown analysis with only (l = 2,m =
2, n = 0) mode can lose 10% of potential LIGO events
[1]. Since this fundamental mode behaves just as we ex-
pect (by having the highest frequency in the (22) mode
and showing to be the least damped), this makes it the
best recovery target.

When adding overtones, the frequencies and damping
times of the wave decreases. Recovering ringdowns with
higher overtones is where the task becomes more difficult.
For us to efficiently be able to recover the (22) mode and
higher overtones, we would need a louder event or a more
sensitive detector.

C. Subdominant Modes and Overtones

Simulating the subdominant modes along with their
overtones is imperative to understand how to deconstruct
real waveforms. When we begin recovering these HOMs
in true ringdown data, we will know what to search for
and soon be confident in what and where the best events
are to spot them.

Beginning with the first subdominant angular mode
(l = 3,m = 3, n = 0), we note an increase in frequency
from the dominant fundamental mode (l = 2,m = 2, n =
0). The subdominant mode of (l = m = 3) is consistent
in the decrease in frequency with increasing overtones.
We see the same information when simulating the (l =
m = 4) fundamental mode along with various overtones.

D. Ringup-Ringdown

By simulating a ringup-ringdown waveform for muti-
ple HOMs we are able to note that higher modes have
higher frequencies and amplitudes. The overtones of
these modes reveal lower amplitudes and a small decrease
in frequency (see FIG. 2). These plots are a base refer-
ence for when simulating real signals, so we know what
is expected from the simulated data containing higher
modes.

E. IMRPhenomXP

Moving into IMRPhenomXP, we know that this ap-
proximant includes only the 22 angular mode. By adopt-
ing a fitting method that specifically fits for the 22 mode,
we are able to confidently fit the 22 mode and its respec-
tive overtones. Curve fit is looking to fit amplitude and
phase to the truncated IMR waveform. When using IM-
RPhenomXP, since it only possesses the 22 mode we are

FIG. 2. Increase of amplitude and frequency in HOMs. The
oscillation period increases when transitioning from angular
mode 22 to 33. The overtones here are also showing the de-
crease in amplitude and frequency.

able to fully recover the dominant mode along with the
first and second overtones. Seemingly strict bounds are
placed to allow curve fit to fit more efficiently, as shown
in FIG. 3 and FIG 4.

FIG. 3. Curve fitting to the IMRPhenomXP truncated wave-
form. The fit adapts to the phase and amplitude of the signal.

FIG. 4. Plotting the return values of curve fit to the overtones
of IMRPhenomXP truncated waveform. This is expected, 220
dominates while the overtones are sub-dominant.
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F. IMRPhenomXPHM

IMRPhenomXPHM has proven to be the most difficult
for curve fit to adjust to. There are five modes that all
include overtones (summing to be thirty parameters in
addition to final mass and spin) that curve fit is chal-
lenged with. With the strictest bounds, curve fit still
does its best work at the beginning time window of the
signal and tends to give a poor fit at later times. I hope
to soon improve this method by comparing the residuals
of each fit and returning the best possible fits.

When curve fitting IMRPhenomXPHM, the input pa-
rameters ultimately determine how well curve fit can re-
cover the full waveform and its modes. The best fit used
initial parameters of equal mass and equal spins in the
x,y,and z-directions at an inclination of zero (see FIG. 5).
The next best curve fit was handled well with parame-
ters of equal mass and negative equal spin in only the
z-direction with an inclination of π/2 as shown in FIG.
6.

FIG. 5. Curve fit of IMRPhenomXPHM truncated waveform.
Parameters of M1 = 40,M2 = 40, χ1 = (0.5, 0.5, 0.5), χ2 =
(0.5, 0.5, 0.5) The orange line represents the fit, fitting more
accurately from time 0 to 0.011 and later skews off.

FIG. 6. Curve fit of IMRPhenomXPHM truncated waveform.
Parameters of M1 = 40,M2 = 40, χ1 = (0, 0,−0.5), χ2 =
(0, 0,−0.5) Orange line representing the fit, again fitting more
accurately in the beginning and later dies down.

G. Next Steps

The next step in this process is attempting to keep
residual values to compare what fits are the most accu-
rate. From here, we can determine whether other meth-
ods within curve fit should be resourced or if the residual
value is low enough that we can accept the fit.
Beyond simulating the fundamental dominant and fun-

damental subdominant modes along with their respec-
tive overtones to explore the raw ringdown waveform, we
don’t want to just examine the noiseless scenario.
After analyzing and fitting the most basic waveform,

we plan to then add Gaussian distributed noise to the
simulated ringdown. By adding noise, it will then be
possible to explore the recovery of HOMs and their over-
tones in a more realistic scenario.
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FIG. 7. Frequency f22n (left), damping time τ22n (center) and quality factor Q22n = πf22nτ22n (right) for changing l = m = 2
tones, as a function of dimensionless BH spin χ. Times are measured in units of tM ≡ GM/c3 for BH mass M .

FIG. 8. Frequency f33n (left), damping time τ33n (center) and quality factor Q33n = πf33nτ33n (right) for changing l = m = 3
tones, as a function of dimensionless BH spin χ.

FIG. 9. Frequency f44n (left), damping time τ44n (center) and quality factor Q44n = πf44nτ44n (right) for changing l = m = 4
tones, as a function of dimensionless BH spin χ.
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