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Abstract

As we look ahead to LIGO, Virgo and KAGRA (LVK)’s next observational run (O4) and future
gravitational wave observatories such as Cosmic Explorer, understanding the sensitivity of the
detectors network for compact binary coalescences (CBCs) is important to estimating the merger
rate density. The parameter space of CBCs is composed of fifteen parameters, which are used to
characterize the binary systems. In this work, we explore how the network sensitivity (space-time
sensitive hypervolume) changes according to changes in the CBC population parameter space.
Using Monte Carlo simulations, we solve the averaged space-time sensitive hypervolume for
different parameter configurations, marginalizing over subsets of the parameter space so that we
can compare them.

1 Introduction

1.1 Overview of the study

Understanding the detector network sensitivity
(space-time hypervolume VT) for GWs from CBCs
is important for solving for the merger rate density,
which is a key to understand the cosmic popu-
lation and evolution of compact binaries. This
works aims to study how the volume-time sensi-
tivity of the LIGO, VIRGO and KAGRA network
changes according to changes in the parameter
space of coalescing binary systems. The param-
eter space of coalescing binary systems is com-
posed of both intrinsic parameters (masses and

spins) and extrinsic parameters (right ascension,
declination, luminosity distance, inclination, po-
larization angle, time of coalescence, and phase at
coalescence). This project will use available com-
putational tools such as PyCBC[1] and Bilby [2]
to generate waveforms produced from the merger
of binary black holes (BBHs) and binary neutron
stars (BNSs). By using Monte Carlo simulations,
it will calculate the dependence of the space-time
sensitive hypervolume on the selected parameters.
The detections are defined using the predicted
signal-to-noise ratio (SNR) of the injected signals,
and is determined based on a SNR threshold. This
study will be applied to estimate the space-time
sensitive hypervolume of the next observation run
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(O4) that is set to start running in March 2023,
as well as to future GWs observatories.

1.2 Gravitational waves
In 2015, LIGO made its first direct detection of
gravitational waves, GW150914 [3]. Since then
GW signals from mergers of binary black holes
and neutron stars have been detected. The third
LIGO Scientific, Virgo and KAGRA (LVK) Col-
laboration Gravitational-Wave Transient Catalog
(GWTC- 3) contains 90 GW signals from compact
binary coalescences (CBCs) [4].
The space-time distortions caused by gravitational
waves are transverse to direction of propagation.
The LIGO detectors have two perpendicular 4km
arms, each with a Michelson interferometer with
a Fabry-Perot resonant cavity that allows to mea-
sure the change in the length of the arms [5]. This
difference is used to calculate the strain, which is
defined as h = ∆L/L. The strain has a plus and
a cross polarization:

h = h+(t − z/c) + h×(t − z/c). (1)

1.3 Signal-to-noise ratio (SNR)
This study uses simulations of waveforms over
the parameter space. To quantify if a simulation
of a strain would be detected this study uses the
general noise-weighted inner product:

⟨a|b⟩ = 4
∫ fmax

fmin

a∗(f)b(f)
Sn(f) df (2)

where Sn is the Power spectral density (PSD).
The optimal SNR (ρ) is calculated using equation
2, where ρ2 = ⟨h|h⟩. The SNR is calculated for
each detector, and the estimated SNR of all the
detectors in the network can be calculated as the
square root of their individual SNRs squared:

ρ =
√

ρ2
H1 + ρ2

L1 + ρ2
V 1 (3)

where ρH1 stands for the SNR of the Hanford
observatory, ρL1 the SNR of the Livingston ob-
servatory, and ρV 1 the SNR of Virgo. If the SNR
is above a threshold, it could be detected.

1.4 Space-time sensitive hypervol-
ume

Estimating the merger rate density is important
to understanding the cosmic population. The
mean number of signals of astrophysical origin Λ1
above the chosen threshold, is related to R, the
rate density (events per unit time per comoving
volume) of binary coalescenses, by [6]:

Λ1 = R⟨V T ⟩ (4)

where ⟨V T ⟩ is the averaged space-time sensitive
hypervolume, which is the main topic of this study
and is described by the following equation:

⟨V T ⟩ = T

∫
dΩ

∫
η(z, λ⃗)C(z)D2

L(z)dz (5)

where η( ⃗DL, λ) is the efficiency function, and DL

is the luminosity distance. In equation 5, C(DL)
incorporates all cosmological effects:

C(z) = c

H0

1
(1 + z)3E(z) (6)

2 Methodology
It is not possible to calculate the space-time sensi-
tive hypervolume (Eq. 5) analytically. The Monte
Carlo integration is used to compute an estimate
of its integral using random sampling. Therefore,
it is necessary to generate populations of CBCs
waveforms to numerically solve for the space-time
sensitive hypervolume.

2.1 Generating waveforms
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Figure 1. An example of a simulated waveform
in time domain. The waveform was generated
for black holes of 35 M⊙, at a distance of 1 Mpc,
using the IMRPhenomXP approximant. The
waveform is tapered to zero at frequencies below
20 Hz because of computational costs.

This project uses PyCBC [1], a software pack-
age, that has methods that generate waveforms
in the time and frequency domains. The methods
to generate those waveforms received as input an
approximant waveform model families, such as IM-
RPhenomXP [7, 8][] and the following parameters:
masses, spins, inclination, phase at coalescence,
and luminosity distance. It returns the cross and
plus polarization of the waveform. It is neces-
sary to take into account the detector antenna
response to each polarization, as in [9]:

h = h+F+ + h×F× (7)

where F+ and F× depend on right ascension, dec-
lination, and polarization angle.

Figure 2. An example of a simulated waveform in
frequency domain. The blue line is the waveform
simulated for a black hole merger of masses 35
M⊙, at a distance of 1 Mpc. The orange line is
the noise of the detector for O3 in the Hanford
detector.

2.2 Generating populations
In this project, the generation of the CBCs popu-
lation is carried in three steps. In each of those
steps, the parameters are generated according

to probability distributions. The first step is
drawing the parameters necessary to generate
the CBCs waveforms: masses, spins components,
inclination, and phase at coalescence. For each of
those configurations, the waveform are generated
at a luminosity distance of 1 Mpc.

The second step is drawing the sky parameters
(right ascension, declination, and polarization)
from the prior probability distribution. The sky
parameters are used to calculate the detector
antenna response as shown in Eq. 7. For each
waveform generated in the first step, N number of
sky configurations are draw, and the correspond-
ing SNR is calculated.

Figure 3. SNR for 100 samples for different lumi-
nosity distances, in logarithm scale. All the other
parameters were kept fixed. Mass 1 is 35 M⊙,
mass 2 is 35 M⊙, and all the other parameters
were set to zero.

The last step is scaling the SNR according
to an established number of luminosity distances.
That is possible because, as shown in Figure 3,
there is a relationship between the SNR and the
luminosity distance (SNR∝ 1/DL). Therefore,
a number of luminosity distances are draw from
probability distributions for each of the SNRs
calculated in the second step. Then, they are
scaled accordingly. The scaling of the SNR using
the luminosity distance is a desired operation be-
cause it is computationally faster than generating
a new waveform for each distance. However, it is
important to note that the masses are generated
drawing from p( ⃗θdet), and mass is degenerate with
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redshift:
mdet = (1 + z)msource (8)

Therefore, it is necessary to account for this in

the calculation, especially because if we just cor-
rect the masses to the correct frame, then the
masses of population is not going to follow the
mass probability density.

Figure 4. Flowchart showing the pipeline used by SIFCE [10] to generate a population and calculate
SNRs.

2.3 Space-time sensitive hypervol-
ume estimation

Using Monte Carlo, Eq. 5 can be estimated as a
sum:

⟨V T ⟩ = 1
|Γ|

∑
θ⃗∈Γ

ω(z)pdet(θ⃗) (9)

where:

ω(z) = C(z)D2
L(z). (10)
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3 Experiments

3.1 Calculating the variance of the
space-time sensitive hypervol-
ume

As we are using Monte Carlo to numerically solve
for the space-time sensitive hypervolume, it is
important to understand how precise the estima-
tions are and how it varies with the size of the
population. In this experiment, our population
is composed of BNSs and we are studying the
variance of the estimated space-time sensitive hy-
pervolume estimation. We chose to use a BNS
population because the detection of BNSs mergers
are constrained to smaller redshifts, so the effects
of the mass degeneracy are almost negligible. In

this study, the maximum luminosity distance is
400 Mpc, for which the redshift using Planck18
cosmology [11] is ∼ 0.0849.

Therefore, we are not carrying corrections for
the masses frames. Here, m1 is draw from Gaus-
sian distributions with mean of 1.5 M⊙ and stan-
dard deviation of 0.05 M⊙:

p(m1) ∝ 1
0.05

√
2π

e− 1
2

(m1−1.5)
0.05 (11)

and the mass ratio has a probability distribution
following a power law:

p(mratio) ∝ m2
ratio (12)

and is has a minimum of 0.9 and a maximum of
1. The spins components of the binary stars are
set to zero.

Figure 5. The space-time sensitive hypervolume distribution, when computer over different number
of waveform configurations.
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4 Progress and next steps
During the last weeks, I contributed to the devel-
opment of Simple Injection Framework for Com-
putational Estimates (SIFCE), a software pack-
age that performs the procedure described in
the Methodology. More specifically, I worked on
the implementation of the methods to compute
the space-time sensitive hypervolume, and in the
methods to generate and organize the data frame
that stores the parameters of the CBCs. The next
step is to conduct experiments with the SIFCE to
study the dependence of the space-time sensitive
hypervolume distribution in the parameter space.
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