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What is SGWB?
● 4 primary sources of GWs:

○ CBCs → chirps
○ Pulsars → periodic GW emission
○ Supernovae → ???
○ SGWB 

● Formal definition: “all unresolved sources of 
GWBs in the universe”

● Assumed isotropic, Gaussian, stationary, unpolarized
○ The longer we collect data, the more we can refine this background

● So far, lots of work on bounding the SGWB
● Detected as a power law for now, anticipate a turnover in more sensitive 

detectors

https://arxiv.org/pdf/1710.05837.pdf

3



BBH Background Energy Density

● Energy density spectrum dependent on SFR (star formation rate)
● R(z) encodes metallicity as a function of redshift
● (1+z) factor incorporates time delay
● Population averaged energy density depending on the two BBH masses
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BBH Background Energy Density

Merger Density 
Rate
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BBH Background Energy Density

Population 
Averaged Energy 
Spectrum

Abbott, R., et al. (2021)

6



Four plots for interpolating
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Too many Knots

One too many knots Correct Number of knots

No knots = only noise 



RJMCMC Fitting Algorithm
Markov Chain Monte Carlo (MCMC)
● Moving node horizontally + vertically
● Diagonal movement (differential 

evolution)
○ Scale a vector drawn between 2 

random previous nodes

Reverse Jump (RJ)
● Birth + death proposals
● Allows the algorithm to find the optimal 

number of nodes in a range
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Recovering Parameters with RJMCMC
Can we recover parameters in a different space than our data?

● Finding the Omega(f) very well
● Spikes in higher redshift - RJMCMC finding that high redshift mergers don’t 

contribute much to the energy density spectrum
○ Not much constraining that high redshift once the fitter gets stuck 
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Let’s Get Noisy!
Given noise, can we still recover the profile in parameter space?

● Noise is green curve → larger than injected Omega(f)
● More variation in fits but evidence envelope of fits around injected R(z) 
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Results
● Recovering the injected R(z) within an 

envelope of 1σ given only Omega(f)
● Peak is located in the 1σ envelope of 

recovered fits with injection + 
significant noise

● Able to recover multiple R(z) injections
○ Requires more iterations (1 million)
○ Expected but confirmation is nice 

since we start the nodes on a guessed 
R(z) curve
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Bounding 3G Detectors
● Integrate over the fits to make histogram
● Must weight the integral by detector sensitivity

● Goal: apply this method to 3G detectors
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Future Work
● Try recovering over parameters and profiles 

of GWB given Omega(f)
● Place nodes in Log(R(z)) space instead of just 

R(z)
● Take a step back and see if given a 

TimeSeries, what we can recover
● Add in better marginalization to more 

accurately predict 3G stellar BBHs
○ Run more iterations of the recovery to 

better converge
● Generalize and package this pipeline
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Recap
● As our GW detectors get more sensitive, we want to be able to capture, fit, 

and understand the SGWB broken power law

● Westley - generalized RJMCMC fitter we anticipate will find Omega(f) features

● One application of Westley: fitting in parameter space

● Can recover parameter profiles even with noise in Omega(f) space

● Understanding and analyzing posterior R(z)s → bounding 3G detectors
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