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Abstract

The Stochastic Gravitational Wave Background (SGWB) is the com-
bination of many unknown sources. Unlike known sources lasting a short
amount of time, the SGWB is a consistent signal that is always present
in the detector data. Current detectors, such as LIGO, have a limited
sensitivity hence most SGWB signals that we expect to see look like a
power-law spectrum. However, in the future when detector sensitivity
increases there will be a problem in how to describe the SGWB because
common theories predicted a turnover in the spectrum. Since there is so
much we do not know yet of the unknown sources it is pivotal to design
a model that will be general and generic so that we can detect a SGWB
that does not look like a simple power law. We propose to use current
cross-correlation and statistical methods combined with a new method
for describing non-power law models to detect SGWB. We propose to use
splines and Gaussian processes to define this generic model and test run
it with real and/or simulated data.

1 Introduction

Gravitational waves (GW) are ripples in space time that are initiated from
extremely energetic sources. Known sources, in increasing order of how diffi-
cult they are to detect, include chirps from coalescing binary systems, periodic
sources from pulsars, and bursts from supernovae [1]. Sources that are random,
with multiple uncorrelated events, are called stochastic gravitational-wave back-
grounds (SGWBs). Unlike deterministic sources that last for a certain amount
of time, the SGWB are always present. The SGWB can include events di-
rectly following the big bang, or more recently-generated signals that we can’t
necessarily individually detect.

LIGO’s first detection in 2015 was a groundbreaking discovery that resulted
in a Nobel prize. Events that we can see individually can inform us about the
nearby Universe. However, looking at the SGWB from unresolved events and
background from the early universe can provide information on a much larger
scale. Models are created to predict how certain sources contribute to a SGWB
and when an SGWB might be seen. We can do the reverse, and use the data to
estimate the values of the parameters associated with each model.

Some models do not have a simple functional form such as a SGWB from a
binary coalescences where the result is multiple events adding up together. With
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current detectors the collection of binary coalescences can be well-described by
the simple analytic power law [2]. However, as detectors become more sensitive,
we expect to see a “smooth” turnover, which we can not describe analytically.
Additionally, we may see compact binary coalescences (CBCs) contribute a
similar amount to the SGWB as other sources, like those from the big bang.
Although each source might be described by a power law, its sum could not
be so easily described analytically. Consequently we need a method that will
characterize a SGWB of any “smooth” type.

2 Background

2.1 Current Models

Currently it is assumed that the GWB spectrum is a power law,

ΩGW (f) = ΩGW (fref )

(
f

fref

)α

. (1)

Where ΩGW (f) is the GW energy density, fref is a reference frequency and α
is the spectral index of the signal. ΩGW and α are estimated. Although ΩGW

is usually considered a cosmological quantity here it is also used to describe the
energy from astrophysical events so that we can compare them to cosmological
sources [3].

In figure 1 we show different versions of the SGWB from compact binary
coalescences with the assumption of it made up completely of mergers, along
with the estimated GWB sensitivity of LIGO detectors. The curves in Fig 1 are
well-described power-laws until a certain point were they turn over. The gray
sensitivity curves show that for realistic curves (i.e. those with chirp masses
below 50 M⊙), current generation detectors are not sensitive to this turnover.
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Figure 1: Figure reproduced from [2]. We show the binary black hole’s back-
ground with various chirp masses with the Fiducial model for stochastic back-
ground (colored lines). Power-law integrated curves for one year with Advanced
LIGO (grey lines).

This turnover is the astrophysical GWB’s non-analytical piece. The turnover
depends on the masses of the black holes and becomes more complex as different
populations are added to it. Future detectors will be sensitive to these turnovers
which can clarify characteristics for CBCs such as: the time it takes for a star
to merge in a binary, if properties of the universe contribute to the formation or
mass of a black hole, and how the populations of masses and spins of a neutron
star and a black hole that enter a binary look like in our spectrum. In addition,
there is an unknown cosmological background in CBCs that are not black holes,
which motivates another reason to create a new model since we simply do not
know what the sources are and how to define them.[3].

2.2 Evolution of Models as Detectors Improve

Once detectors become more sensitive there will be an abundance of individual
events. To search for the SGWB, we will subtract the loudest events from
the data, which will then change the spectrum of the SGWB. An example
of an expected SGWB after subtracting individual events is shown in Fig 2.
Evidently the spectrum is no longer a straight line in log space but it does
appear “smooth”.
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Figure 2: Figure reproduced from [4], the SGWB from all neutron stars (doted
orange line) plotted together with background from unresolved (unsubtracted)
neutron stars (dotted red line), and the sum of the two (red sold line). With
the neutron star summed with unresolved background the line is now longer a
power law.

A general and generic model can effectively detect a SGWB of any “smooth”
shape at higher sensitivity. The paper [4] predicts most models with a “smooth”
look therefore, a new model must capture similar values or change smoothly
from one frequency bin to the next. We propose two methods to detect generic
models. Both methods are regularly used to fit smooth looking curves, and
they are spline fitting and the Gaussian process. As we will discuss in the next
section, this new model can also be used to develop a consistency check to verify
a detection.

3 Methods

To detect a SGWB we will cross-correlate data between detectors. In the fol-
lowing equations the tilde indicates the use of the Fourier transformation. The
detector data (s̃i) involves both GW signal (h̃) and noise (ñ) with the depen-
dency of frequency,

s̃1(f) = h̃1(f) + ñ(f). (2)

The data of the two detectors is then defined in a cross correlation statistic
(C̃(f)) in every frequency bin [5],

C̃(f) =
2

τ

Re[s̃∗1(f)s̃2](f)

γfS0(f)
, (3)

where Re indicates the real part of the cross correlation, τ is the time over which
we are analyzing data, and the normalization includes cosmological constants,
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as well as the overlap reduction function γ(f), which we discuss soon. We can
substitute Eq 3 into Eq 2 and take an average:

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩+⟨ñ∗

1(f)h̃2(f)⟩+⟨h̃∗
1(f)ñ2(f)⟩+⟨ñ∗

1(f)ñ2(f)⟩. (4)

We then assume that the signal is uncorrelated with detector noise and the noise
between the two detectors is uncorrelated. Therefore,

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩. (5)

Next, we note
2

τ
⟨h̃∗

1(f)h̃2(f)⟩ = H(f)γ(f). (6)

Here H(f) is called the gravitational wave power, and the proportionality con-
stant γ(f) is called the overlap reduction function. The overlap reduction func-
tion is a weight function in frequency that quantifies what fraction of the GW
power our detectors are sensitive to. Thus, γ(f) = 1 means we see all of the GW
power in our detectors, but γ(f) = 0.5 means we see only half of the GW power.
Since we know exactly what detectors we are using its value is exactly known
[3]. This frequency dependence provides a great insight into the frequencies to
which the detectors are most sensitive.
When we substitute Eq. 6 back into Eq. 3, we find that in general,

⟨C̃(f)⟩ = H(f)

S0(f)
= ΩGW (f) (7)

Where the constants S0(f) are used so that we have the cross-correlation pro-
portional to the energy density.

The shape of the cross-correlation is what we want to model. C̃(f) is calcu-
lated by taking the cross-correlation between our detectors for numerous short
time intervals then taking the average of all the runs. We then compare the av-
eraged C̃(f) to power law spectra to verify if there is any evidence of power law.
What we propose to do here, is to instead compare to more generic “smooth”
functions like splines or Gaussian processes. Then proceed to test our model
with real and/or simulated data.
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4 Work Plan

Dates Events/Tasks

June 14 Program begins
June 15 - July 1 Begin background research on SGWB and

learn to use standard SGWB programming tools
June 27 - July 1 Work on and submit Interim report 1

July 5 - 26 Developing new code:
working on proposed novel solution to SGWB
and translating them into a python pipeline

July 25-29 Work on and submit Interim report 2
July 29 Turn in abstract

July 27- August 12 Testing new code: using new pipeline
with real or simulated data

August 15 - 19 Work on and submit final summer report
August 17-19 Final presentation
September 23 Submit Final Report
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