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The Stochastic Gravitational Wave Background (SGWB) is a consistent signal composed of a
combination of many unknown sources. Since the SGWB is continuous, there is information on
a much larger scale with the hope of detecting remnants of the early universe in the background.
Current models work well to describe SGWB with current detector sensitivity where the SGWB
can be described by a simple power-law. However, common theories predict a turnover that will
be detected with future detectors’ sensitivity; this will lead to inconsistencies if current models are
used. Since there is so much we do not know yet of the unknown sources it is pivotal to design a
general and generic model to detect a SGWB that does not characterize as a simple power law. We
use a new method of the Bayes factor along with westley, to do generic fitting when describing
non-power law injections, to detect the SGWB. We show that this Bayes factor comparative results
to those of the optimal signal to noise ratio. Our generic model was tested on simulated data and
used splines and linear interpolation instead of power laws. We intend to later on show that, for
non power-law models, our Bayes factors are more sensitive than those calculated with traditional
models.

I. INTRODUCTION

Gravitational waves (GW) are ripples in space time
that are initiated from extremely energetic sources.
Known sources, in increasing order of how difficult they
are to detect, include chirps from coalescing binary sys-
tems, periodic sources from pulsars, and bursts from su-
pernovae [1]. Sources that are random, with multiple un-
correlated events, are called stochastic gravitational-wave
backgrounds (SGWB). Unlike deterministic sources that
last for a certain amount of time, the SGWB is always
present. The SGWB can include events directly following
the Big Bang, or more recently-generated signals that we
can’t necessarily individually detect.

LIGO’s first detection in 2015 was a groundbreaking
discovery that resulted in a Nobel prize. These individ-
ual events can inform us about the occurrences of stellar
objects in the nearby Universe. However, looking at the
SGWB can provide information on a much larger scale
with much hope that we could detect GW from early uni-
verse. Models are created to predict how certain sources
contribute to a SGWB and when an SGWB might be
seen. We can do the reverse, and use the data to esti-
mate the values of the parameters associated with each
model.

Some models do not have a simple functional form such
as a SGWB from a binary coalescences where the signal is
generated from many individual events adding together.
With current detectors the collection of binary coales-
cences can be well-described by the simple analytic power
law [2]. However, as detectors become more sensitive,
we expect to see a “smooth” turnover, which we have
not been able to describe analytically. Additionally, we
may see compact binary coalescences (CBCs) contribute
a similar amount to the SGWB as other sources, like
those from the Big Bang. Although each source might
be described by a power law, its sum is not so easily

analytically described. Consequently, we need a method
that will characterize a SGWB of any “smooth” type.

II. BACKGROUND

A. Current Models

The SGWB is described by the dimensionless energy
density in gravitational waves in the Universe per loga-
rithmic frequency bin,

ΩGW (f) =
1

ρc

dρGW

d ln f
. (1)

ρc is the critical energy density for a flat Universe and
dρGW (f) is the energy density in GWs in the the fre-
quency bin f to f + df . Currently it is assumed that
the gravitational wave background (GWB) spectrum is a
power law,

ΩGW (f) = ΩGW (fref )

(
f

fref

)α

. (2)

Where ΩGW (f) is the GW energy density, fref is a refer-
ence frequency and α is the spectral index of the signal.
ΩGW and α are estimated. Although ΩGW is usually
considered a cosmological quantity here it is also used to
describe the energy from astrophysical events so that we
can compare them to cosmological sources [3].

Current methods to identify the GWB are signal to
noise ratio (SNR) and the Bayes Factor. SNR uses the
ratio of signal to noise where there is more weight on
frequencies that have less uncertainty. This is done by
inverse noise weighting, where C is the signal and σ is
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noise.

SNR(f) =
Ĉ(f)

σ(f)
,

CTOT =

∑N
i=1 Ĉ(f)/σ(f)2∑N

i=1 σ(f)
−2

;

σTOT = (
∑

σ(f)−2)−
1
2

SNRTOT =
CTOT

σTOT

(3)

The SNRTOT tells us how greater the signal is to the
detector noise. For GWB searches, when SNRTOT = 3 it
is considered as evidence of a GWB and a SNRTOT = 5
is a detection of a GWB. Bayes factor is similar to SNR
in which the factor is that of the data containing a signal
divided by the probability the data is consistent with just
noise in the detector,

Bayes factor =
P (Ĉ|signal)
P (Ĉ|noise)

. (4)

The probability is based on the posterior probability of
the algorithm’s parameters given the data. θ is used for
signal and 0 is for noise,

P (θ⃗|Ĉi) =
P (Ĉ|θ⃗)P (θ⃗)

P (Ĉ)

P (0|Ĉi) =
P (Ĉ|0)P (0)

P (Ĉ)

(5)

The evidence is then given by the integral over the nu-
merator. So the integral for signal in eq.5 is,

P (Ĉ|signal) =
∫

dθ⃗P (Ĉ|θ⃗)p(θ⃗). (6)

In our case for a power-law of SGWB, shown in equation

2 the parameters in θ⃗ is amplitude A and spectral index
α . Both the SNR and Bayes factors perform well with
current detectors and are the base work for a newly pro-
posed method for future detectors. In section III we will

discuss how θ⃗ is used in our interpolation model, where
this method uses the height of the control points that are
interpolated between those parameters.

In figure 1, there are different versions of the SGWB
from compact binary coalescences with the assumption
of it made up completely of mergers, along with the
estimated GWB sensitivity of LIGO detectors. The
colored curves in Fig 1 are well-described power-laws
until a certain point were they turn over. The gray
sensitivity curves show that for realistic curves (i.e. those
with chirp masses below 50 M⊙), current generation
detectors are not sensitive to this turnover.

Figure 1. Figure reproduced from [2]. Binary black hole’s
background with various chirp masses with the Fiducial model
for SGWB (colored lines). Power-law integrated curves for
one year with Advanced LIGO (grey lines).

This turnover is the astrophysical GWB’s non-
analytical piece. The turnover depends on the masses
of the black holes and becomes more complex as differ-
ent populations are added to it. Future detectors will
be sensitive to these turnovers which can clarify charac-
teristics for CBCs such as: the time it takes for a star
to merge in a binary, if properties of the universe con-
tribute to the formation and/or mass of a black hole,
and how the populations of masses and spins of a neu-
tron star and a black hole that enter a binary look like
in our spectrum. In addition, there is an unknown cos-
mological background in CBCs that are not black holes,
which motivates another reason to create a new model
since we simply do not know what the sources are and
how to define them.[3].

B. Evolution of Models as Detectors Improve

Once detectors become more sensitive there will be an
abundance of individual events. To search for the SGWB,
we will subtract the loudest events from the data, which
will then change the spectrum of the SGWB. An example
of an expected SGWB after subtracting individual events
is shown in Fig 2. Evidently the spectrum is no longer a
straight line in log space but it does appear “smooth”.
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Figure 2. Figure reproduced from [4], the SGWB from all
neutron stars (doted orange line) plotted together with back-
ground from unresolved (unsubtracted) neutron stars (dotted
red line), and the sum of the two (red sold line). With the
neutron star summed with unresolved background the line is
now longer a power law.

A general and generic model can effectively detect
a SGWB of any “smooth” shape at higher sensitivity.
The paper [4] predicts most models with a “smooth”
look therefore, a new model must capture similar values
or change smoothly from one frequency bin to the
next. We propose an interpolation model using hybrid
statistics to detect general models. The interpolation
model will takes regularly used method of spline fitting
to fit smooth looking curves. As we will discuss in the
next section, this new model can also be used to develop
a consistency check to verify a detection.

III. METHODS

A. Detection

To detect a SGWB we will cross-correlate data between
detectors. In the following equations the tilde indicates
the use of the Fourier transform. The detector data (s̃i)

involves both GW signal (h̃) and noise (ñ) with the de-
pendency of frequency,

s̃1(f) = h̃1(f) + ñ(f). (7)

The data of the two detectors is then combined into a
cross-correlation statistic (C̃(f)) in every frequency bin
[5],

C̃(f) =
2

τ

Re[s̃∗1(f)s̃2(f)]

γfS0(f)
, (8)

where Re indicates the real part of the cross correlation,
τ is the time over which we are analyzing data, and the
normalization includes cosmological constants, as well as
the overlap reduction function γ(f), which we discuss
soon. We can substitute Eq 8 into Eq 7 and take an
average:

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩+ ⟨ñ∗

1(f)h̃2(f)⟩
+ ⟨h̃∗

1(f)ñ2(f)⟩+ ⟨ñ∗
1(f)ñ2(f)⟩.

We then assume that the signal is uncorrelated with de-
tector noise and the noise between the two detectors is
uncorrelated. Therefore,

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩. (9)

Next, we note

2

τ
⟨h̃∗

1(f)h̃2(f)⟩ = H(f)γ(f). (10)

Here H(f) is called the gravitational wave power, and
the proportionality constant γ(f) is called the overlap
reduction function. The overlap reduction function is a
weight function in frequency that quantifies what fraction
of the GW power our detectors are sensitive to. Thus,
γ(f) = 1 means we see all of the GW power in our cross-
correlation, but γ(f) = 0.5 means we see only half of the
GW power. Since we know exactly what detectors we
are using its value is exactly known [3]. This frequency
dependence provides a great insight into the frequencies
to which the detectors are most sensitive.
When we substitute Eq. 10 back into Eq. 8, we find

that in general,

⟨C̃(f)⟩ = H(f)

S0(f)
= ΩGW (f) (11)

Where the constants S0(f) are used so that we have the
cross-correlation proportional to the energy density.
The shape of the cross-correlation is what we want to

model. C̃(f) is calculated by taking the cross-correlation
between our detectors for numerous short time intervals
then taking the weighted average of all the runs. We
then compare the averaged C̃(f) to power law spectra
to verify if there is any evidence of power law. What we
propose to do here, is to instead compare to more generic
“smooth” functions like splines or Gaussian processes.
Then proceed to test our model with simulated data.

B. Interpolation Model

The LIGO collaboration has several libraries and
pipelines that are used specifically for frequency do-
main spectra. Our work mainly uses the library bibly
and pygwb as well as the pipeline pygwb pipe. Our
method uses Bayesian statistics, like bibly, and a hy-
brid approach, executed by pygwb. This library has
several functions that are needed such as initializing a
Power Spectral Density and generating a prior in log
uniform and Gaussian distribution. pygwb pipe is the
main pipeline to work with SGWB that uses the library
pygwb. We used this pipeline to simulate data from all
three detectors Hanford, Livingston, and VIRGO to then
inject a common GW signal with a chosen spectrum into
our current data.
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The algorithm westley uses these libraries as the
ground work for an interpolation model. This code holds
a big chunk of what we will be testing. Our model will
have control points, referred to as knots, to interpolate
between to create a best fit model to the injection. With
this package we can interpolate between the knots us-
ing either a piece-wise power law or a cubic spline and
run it a number of times to find the probability distri-
bution on where the knots should be placed and turned
on to have the best fit. This paper shows results from
the model using piece-wise power law. Rather than tak-
ing random guesses to find the probability distribution
we use the technique Reverse Jump Markov chain Monte
Carlo (RJMCMC).

A Markov chain Monte Carlo (MCMC) is used to ob-
tain a preferred probability distribution on some set of
parameters. For our model, we want to find the prob-
ability distribution on the height of each knot and how
many are used. With MCMC we are able to make in-
telligent guesses to where the knots should be placed. A
new knot’s position is accepted depending on how well
the ”new” guess will let the model fit the data compared
to its current, ”old” guess. The likelihood function L
tells us how well the model fits the data, and we use a
Gaussian likelihood function. The placement of the knot
is kept whether,

P (accept) = 1, if point has Lnew > Lold

P (accept) =
Lnew

Lold
, if point has Lnew ≤ Lold

The proposed distribution function tells the algorithm
how we decided to guess. The way we guess does not
interfere with the results, however, it does affect the effi-
ciency of the algorithm time wise.

Now, RJMCMC works similar to the previously de-
scribed MCMC with the addition of dimension jumping,
allowing for unknown parameters. This works well for
our project since we tested different types of signals con-
sisting of undefined parameters.

C. Statistics

Our Model uses a newly proposed Bayes factor. This
Method takes concepts from “SNR” and “Bayesian Fac-
tor” methods of searching for SGWB. Since the knots in
our model are used to fit a signal, they should only be
present for a signal. Therefore, we should have 1 or more
knots when there is a signal present and no knots for only
noise. Our method is established as,

BM1
M2 =

N≥1

N0
, (12)

where M1 is the signal model fit and M2 is the noise
model fit at which the B is determined. Each interpola-
tion model runs the RJMCMC for a certain amount of
iterations and ending with a set of samples. N≥1 is the

number of samples with more than one knot, indicating a
signal is present. N0 is the number of samples with zero
knots meaning the data is consistent with noise.

IV. TESTING WESTLEY’S ALGORITHM

To see if our algorithm works we tested it on an injected
GWB. We used O4 simulated data, which was reduced
to just the signal (Ĉ). This was cross correlated with the
Hanford and Livingston detector. We set the model to
have a max of 20 knots and ran the RJMCMC for 105

steps. westley burned the first half, and then recorded
the parameters at only every 10th step. Figure IV shows
a comparison between the injected signal (orange), the
data (blue and green), and the recovered signal for 500
MCMC steps (black).

40 60 80 100 120 140 160 180 200
Frequency [Hz]

10 8
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10 2

100

gw
(f)

Figure 3. The figure shows the energy density estimated from
the data in blue, the uncertainty in green, the energy den-
sity of our proposed injected power law in orange and the
interloped knots in black. westley relatively fit the injected
signal throughout the runs.

Since this is in log space our injection is mostly linear
and most of the simulated runs from westley fit along
the power law. Therefore the code has identified the
signal. Figure 4 is a visual representation of which knots
were in used in each step of the RJMCMC chain.
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Figure 4. Top, shows when the knot was turned on during a
certain run. Bottom, is a histogram to visualize how many
times the certain knot was used for all runs.

The model we tested had spaced out the knots evenly
throughout the spectra and made its own choice when
the knots should be turned on or off. Figure 4 illustrates
the height of each bin which we can use the sum of the
heights for all the bins with the y-axis ≥ 1 and divide
by the height of the bin at zero to get a log Bayes factor
(ln(B)) of around 1.3.

After westley’s proficiency was confirmed with
generic GW spectrum it was then modified to be applied
to a realistic CBC injection.

V. INTERPOLATION MODEL’S PATH TO
DETECTING A REALISTIC GWB

We divided CBC signal’s characteristics into 3 degrees.
First degree was a power-law, the second degree intro-
duced a break or peak in the signal which was defined
by a piecewise power-law, and the third degree then con-
tained the turn over a realistic CBC signal. These degrees
are shown in the following figure with data from O4.
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Figure 5. Figure shows the different degrees of a realist CBC
signal in log space. First degree is a power-law (blue), second
degree is a broken power law with peak as 50Hz(orange), and
the third degree is the realistic CBC signal where the turnover
come after around 100 Hz (green). Our signals were modeled
with O4 simulated data.

We analytically described the simple power-law
ΩPL

GW(f) and broken power-law ΩBPL
GW (f) then used a re-

alistic signal from Taylor Knapp’s project. Below are the
equations used for the first two degrees

ΩPL
GW(f) = Ωref

(
f

fref

)α

, (13)

ΩBPL
GW (f) =

{
Ωpeak(

f
fpeak

)α1 for f ≥ fpeak,

Ωpeak(
f

fpeak
)α2 for f > fpeak.

(14)

The realistic signal came in an array of [ΩCBC
SGW(f), f ] and

was modified to align with the O4 data.

A. Modifications to westley

The westley package has an inheritance package
called sim to westley where there are three methods
for each type of degree. The first and second injection
model was parameterized by it amplitude ΩGW . The
third degree was only parameterized by time in observa-
tion since this signal amplitude was already calculated
based on the population of black holes that Taylor used
to create the injection. Each method calculates SNR2

TOT
eq.3 and the log of our proposed Bayes factor eq.4 ln(B).
Instead of simulating time series data using pyGWB we
generate Gaussian noise with the expected variance of
Ĉ(f), which is given by,

σ2(f) =
1

2δf

P1(f)P2(f)

γ2
T (f)S

2
0(f)

, (15)

S2
0(f) =

3H2
0

10π2f3
, (16)

between the detectors Hanford and Livingston.
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B. Results

To attain a larger sample size of our general fitting
we used a script designated to each type of degree that
decreases the total run time. These scripts set the signals
parameter to run through ranges spaced out evenly in
log space to have a sample size of 100. For example, for
the injection model 1, we performed 100 injections with
different amplitudes of ΩGW given by equation 13, spaced
logarithmically between e−9 –7e−9. It also set westley
to run with an 107 RJMCMC iterations. This script ran
each defined parameter job in parallel on Condor.

To check westley’s performance we compared ln(B)
to the SNR2 of each model. It is known that ln(B) and
SNR2

TOT are proportional to each other so we expected
our models to show a linear characteristic between the
two. Fig. 6 shows all three injections’ ln(B) vs. SNR2

TOT
with the linear characteristic. This verified the profi-
ciency of our method.
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Figure 6. The figure above shows all 3 degrees to reaching a
realistic CBC signal. Each degree had a genetic fitting with
westley with 100 samples and had 107 iterations of the RJM-
CMC. The first degree, simple power-law, samples are in blue.
The second degree, broken power-law, samples are in orange.
The final degree, realistic CBC signal, samples are in green.
We expected all injected signals to a linear characteristic after
a ln(B) of 1 due to the proportionality ofSNR2

TOT to ln(B).

We tested the simple power-law and broken power-
law’s Bayes factor in term of the injection amplitude.
The ln(B) is our reference of how strong the detection
is since we use the number of samples N that have 1 or
more knots turned on over the number of samples with
no knots turned on eq.12. In figure7 we see that as the
ΩGW increased the ln(B) increased exponentially. This
was an expectation as well as confirmation that we would
be able to detect and now model both types of signals.
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Figure 7. Both simple power law and broken power law log
B increased quadratically as the ΩGW increased. The data
attributes validates the models potential to detect simple and
broken power-laws

Since the realistic CBC signal was calculated in a dif-
ferent manner, time was the variable that we could vary
for our data sample. Figure 8 shows the detection prob-
ability increase as the years increase.

2 4 6 8 10 12 14
Years

0

2

4

6

8

10

ln
(

)

Realistic Signal

Figure 8. The injected realistic CBC signal ln(B) is compared
to time in terms of years. From the data given at log Bayes
factor of 10 or 12, we inferred that could see this signal in
about 10 years.

Since an SNRTOT of 5 is the benchmark of a detection,
a ln(B) of around 10 indicates detection of a SGWB. In
the previous figure we see that our interpolation model
suggest a detection of this injection after 10 years.

Although the injected realistic CBC would only be seen
after 10 years, our data confirms that realistic CBCs can
be modeled with westley.
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C. Future Work

Our project was to created a general and generic model
and through our project we have shown that westley
can detect from present detectable sources like a power-
law model and non power-law model. Our data also sug-
gests the proposed Bayes factor method has the same
potental of comparing a model’s aptitude from another
as current used methods. The interpolation model can
be applied to varying signals and therefor affirmation to
its general and generic applications. westley and its
collaborating scripts can be applied to diverse projects
focusing on GWB. Although our results were calculated
with simulated O4 data, it is possible to use other simu-
lated data such as O5, next generation detector data, and
past LIGO observing runs. From my colleague’s project

where Taylor worked on what types of shape can the
SGWB have, our general and generic model can inter-
pret when this shape can be detected and when will the
SGWB have this shape compared to a power-law as the
project continues.
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