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The Stochastic Gravitational Wave Background (SGWB) is a consistent signal composed of a
combination of many unknown sources. Since the SGWB is continuous, there is information on
a much larger scale with the hope of included remnants of the early universe in the background.
Current models work well to describe SGWB with current detector sensitivity where SGBW can be
described by a simple power-law. However, common theories predict a turnover that will be detected
with future detectors’ sensitivity; this will lead to inconsistencies if current models are used. Since
there is so much we do not know yet of the unknown sources it is pivotal to design a general and
generic model to detect a SGWB that does not characterize as a simple power law. We use a new
method of the Bayes factor along with westley, to do generic fitting when describing non-power law
models, to detect SGWB. We will use splines and Gaussian processes to define this generic model
and test with simulated data.

I. INTRODUCTION

Gravitational waves (GW) are ripples in space time
that are initiated from extremely energetic sources.
Known sources, in increasing order of how difficult they
are to detect, include chirps from coalescing binary sys-
tems, periodic sources from pulsars, and bursts from su-
pernovae [1]. Sources that are random, with multiple un-
correlated events, are called stochastic gravitational-wave
backgrounds (SGWB). Unlike deterministic sources that
last for a certain amount of time, the SGWB are always
present. The SGWB can include events directly follow-
ing the big bang, or more recently-generated signals that
we can’t necessarily individually detect.

LIGO’s first detection in 2015 was a groundbreaking
discovery that resulted in a Nobel prize. These individ-
ual events can inform us about the occurrences of stellar
objects in the nearby Universe. However, looking at the
SGWB can provide information on a much larger scale
with much hope on the early universe. Models are created
to predict how certain sources contribute to a SGWB and
when an SGWB might be seen. We can do the reverse,
and use the data to estimate the values of the parameters
associated with each model.

Some models do not have a simple functional form such
as a SGWB from a binary coalescences where the signal is
generated from many individual events adding together.
With current detectors the collection of binary coales-
cences can be well-described by the simple analytic power
law [2]. However, as detectors become more sensitive, we
expect to see a “smooth” turnover, which we can not be
describe analytically. Additionally, we may see compact
binary coalescences (CBCs) contribute a similar amount
to the SGWB as other sources, like those from the Big
Bang. Although each source might be described by a
power law, its sum is not so easily analytically described.
Consequently, we need a method that will characterize a
SGWB of any “smooth” type.

II. BACKGROUND

A. Current Models

Currently it is assumed that the GWB spectrum is a
power law,

ΩGW (f) = ΩGW (fref )

(
f

fref

)α

. (1)

Where ΩGW (f) is the GW energy density, fref is a refer-
ence frequency and α is the spectral index of the signal.
ΩGW and α are estimated. Although ΩGW is usually
considered a cosmological quantity here it is also used to
describe the energy from astrophysical events so that we
can compare them to cosmological sources [3].
Current methods to identify the GWB are signal to

noise ratio (SNR) and the Bayes Factor. SNR uses the
ratio of signal to noise where there is more weight on
frequencies that have less uncertainty. This is done by
inverse noise weighting, where C is the signal and σ is
noise.

SNR(f) =
Ĉ(f)

σ(f)
,

CTOT =

∑N
i=1 Ĉ(f)/σ(f)2∑N

i=1 σ(f)
−2

;

σTOT = (
∑

σ(f)−2)−
1
2

SNRTOT =
CTOT

σTOT

(2)

The SNR tells us how greater the signal is to the detector
noise. For GWB searches, when SNR= 3 it is considered
as evidence of a GWB and a SNR=5 is a detection of
a GWB. Bayes factor is similar to SNR in which the
factor is that the data contains a signal divided by the
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probability the data is consistent with just noise in the
detector.

Bayes factor =
P (Ĉ|signal)
P (Ĉ|noise)

(3)

The probability is based on the posterior probability of
the algorithm’s parameters given the data. θ is used for
signal and 0 is for noise,

P (θ⃗|Ĉi) =
P (Ĉ|θ⃗)P (θ⃗)

P (Ĉ)

P (0|Ĉi) =
P (Ĉ|0)P (0)

P (Ĉ)

(4)

The evidence is then give by the integral over the numer-
ator. So the integral for signal in eq.4 is,

P (Ĉ|signal) =
∫

dθ⃗P (Ĉ|θ⃗)p(θ⃗). (5)

In our case for a power-law of SGWB, shown in eq1 the

parameters in θ⃗ is amplitude A and spectral index α .
Both the SNR and Bayes factors perform well with cur-

rent detectors and are the base work for a newly proposed
method for future detectors. The interpolation model is
the method where the height of the control points are

interpolated between the parameters of θ⃗, this will be
further discussed in section III.

In figure 1 we show different versions of the SGWB
from compact binary coalescences with the assumption
of it made up completely of mergers, along with the
estimated GWB sensitivity of LIGO detectors. The
curves in Fig 1 are well-described power-laws until a
certain point were they turn over. The gray sensitivity
curves show that for realistic curves (i.e. those with
chirp masses below 50 M⊙), current generation detectors
are not sensitive to this turnover.

Figure 1. Figure reproduced from [2]. We show the binary
black hole’s background with various chirp masses with the
Fiducial model for SGWB (colored lines). Power-law inte-
grated curves for one year with Advanced LIGO (grey lines).

This turnover is the astrophysical GWB’s non-
analytical piece. The turnover depends on the masses

of the black holes and becomes more complex as differ-
ent populations are added to it. Future detectors will
be sensitive to these turnovers which can clarify charac-
teristics for CBCs such as: the time it takes for a star
to merge in a binary, if properties of the universe con-
tribute to the formation and/or mass of a black hole,
and how the populations of masses and spins of a neu-
tron star and a black hole that enter a binary look like
in our spectrum. In addition, there is an unknown cos-
mological background in CBCs that are not black holes,
which motivates another reason to create a new model
since we simply do not know what the sources are and
how to define them.[3].

B. Evolution of Models as Detectors Improve

Once detectors become more sensitive there will be an
abundance of individual events. To search for the SGWB,
we will subtract the loudest events from the data, which
will then change the spectrum of the SGWB. An example
of an expected SGWB after subtracting individual events
is shown in Fig 2. Evidently the spectrum is no longer a
straight line in log space but it does appear “smooth”.

Figure 2. Figure reproduced from [4], the SGWB from all
neutron stars (doted orange line) plotted together with back-
ground from unresolved (unsubtracted) neutron stars (dotted
red line), and the sum of the two (red sold line). With the
neutron star summed with unresolved background the line is
now longer a power law.

A general and generic model can effectively detect a
SGWB of any “smooth” shape at higher sensitivity. The
paper [4] predicts most models with a “smooth” look
therefore, a new model must capture similar values or
change smoothly from one frequency bin to the next.
We propose two methods to detect generic models. Both
methods are regularly used to fit smooth looking curves,
spline fitting and Gaussian process. As we will discuss
in the next section, this new model can also be used to
develop a consistency check to verify a detection.
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III. METHODS

To detect a SGWB we will cross-correlate data between
detectors. In the following equations the tilde indicates
the use of the Fourier transformation. The detector data
(s̃i) involves both GW signal (h̃) and noise (ñ) with the
dependency of frequency,

s̃1(f) = h̃1(f) + ñ(f). (6)

The data of the two detectors is then defined in a cross
correlation statistic (C̃(f)) in every frequency bin [5],

C̃(f) =
2

τ

Re[s̃∗1(f)s̃2](f)

γfS0(f)
, (7)

where Re indicates the real part of the cross correlation,
τ is the time over which we are analyzing data, and the
normalization includes cosmological constants, as well as
the overlap reduction function γ(f), which we discuss
soon. We can substitute Eq 7 into Eq 6 and take an
average:

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩+ ⟨ñ∗

1(f)h̃2(f)⟩
+ ⟨h̃∗

1(f)ñ2(f)⟩+ ⟨ñ∗
1(f)ñ2(f)⟩.

We then assume that the signal is uncorrelated with de-
tector noise and the noise between the two detectors is
uncorrelated. Therefore,

⟨s̃∗1(f)s̃2(f)⟩ = ⟨h̃∗
1(f)h̃2(f)⟩. (8)

Next, we note

2

τ
⟨h̃∗

1(f)h̃2(f)⟩ = H(f)γ(f). (9)

HereH(f) is called the gravitational wave power, and the
proportionality constant γ(f) is called the overlap reduc-
tion function. The overlap reduction function is a weight
function in frequency that quantifies what fraction of the
GW power our detectors are sensitive to. Thus, γ(f) = 1
means we see all of the GW power in our detectors, but
γ(f) = 0.5 means we see only half of the GW power.
Since we know exactly what detectors we are using its
value is exactly known [3]. This frequency dependence
provides a great insight into the frequencies to which the
detectors are most sensitive.
When we substitute Eq. 9 back into Eq. 7, we find that
in general,

⟨C̃(f)⟩ = H(f)

S0(f)
= ΩGW (f) (10)

Where the constants S0(f) are used so that we have the
cross-correlation proportional to the energy density.

The shape of the cross-correlation is what we want to
model. C̃(f) is calculated by taking the cross-correlation

between our detectors for numerous short time intervals
then taking the average of all the runs. We then com-
pare the averaged C̃(f) to power law spectra to verify if
there is any evidence of power law. What we propose to
do here, is to instead compare to more generic “smooth”
functions like splines or Gaussian processes. Then pro-
ceed to test our model with simulated data.

A. Needed Tools

The LIGO collaboration has several libraries and
pipelines that are used specifically for frequency domain
spectra. Our work mainly uses the library bibly and
pygwb as well as the pipeline pygwb pipe. Our method
uses Bayesian statistics, like bibly, and a hybrid ap-
proach, executed by pygwb. This library has several func-
tions that are needed such as initializing a Power Spectral
Density and generating a prior in log uniform and Gaus-
sian distribution. pygwb pipe is the main pipeline to
work with SGWB that uses the library pygwb. We used
this pipeline to simulate data from all three detectors
Hanford, Livingston, and VIRGO to then inject a com-
mon GW signal with a chosen spectrum into our current
data.
Another crucial code is the package westley. This

code holds a big chunk of what we will be testing. Our
model will have control points, referred to as knots, to
interpolate between to create a model that we will fit to
the data. With this package we can interpolate between
the knots using either a piece-wise power law or a cubic
spline and run it a number of times to find the proba-
bility distribution on where the knots should be placed
and turned on to have the best fit. Rather than taking
random guesses to find the probability distribution we
use the technique Markov chain Monte Carlo (MCMC).

B. Statistics

An MCMC is used to obtain a preferred probability
distribution on some set of unknown parameters. For
our model, we want to find the probability distribution
on the height of each knot and how many are used. With
MCMC we are able to make intelligent guesses to where
the knots should be placed. A new knot’s position is
accepted depending on how well the ”new” guess will let
the model fit the data compared to its current, ”old”
guess. The likelihood function L tells us how well the
model fits the data, and we use a Gaussian likelihood
function. The placement of the knot is kept whether,

P (accept) = 1, if point has Lnew > Lold

P (accept) =
Lnew

Lold
, if point has Lnew ≤ Lold

The proposed distribution function tells the algorithm
how we decided to guess. The way we guess does not
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interfere with the results, however, it does affect the effi-
ciency of the algorithm time wise.

IV. PROPOSED BAYES FACTOR METHOD

This Method takes concepts from “SNR” and
“Bayesian Factor” methods of searching for SGWB. Since
the knots in our model are used to fit a signal, they should
only be present when a signal is present. Therefore, we
should have 1 or more knots when there is a signal present
and no knots where there is only noise present. Our
method is written as,

BF =
N≥1

N0
, (11)

where N≥1 is the number of samples with signal and N0

is samples classified as only noise.

V. RESULTS

A. Testing Algorithm

To see if our algorithm works we tested it on an in-
jected GWB. Our simulated data was reduced to just
the signal (Ĉ) and cross correlated with the Hanford and
Livingston detector. We set the model to have a max
of 20 knots and ran the MCMC for 100000 steps. From
the 100000 steps, we discarded the first 50,000 as “burn
in” and then recorded the parameters at only every 10th

step. Figure VA below shows a comparison between the
injected signal (orange), the data (blue and green), and
the recovered signal for 500 MCMC steps (black).
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Figure 3. The figure shows the energy density estimated from
the data in blue, the uncertainty in green, the energy density
of our proposed injected power law in orange and the inter-
loped knots in black. The MCMC with 500 steps, relatively
fit the injected signal throughout the runs.

The plot tells us the energy density ΩGW estimated
from the data (blue) and its uncertainty (green). The
energy density of the injected signal is shown in Orange.

Since this is in log space our injection is mostly linear
and most of the simulated runs from westley fit along
the power law. Therefore the code has identified a GW.
Figure 4 is a visual representation of which knots where
in used in each run of the model.
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Figure 4. Top, shows when the knot was turned on during a
certain run. Bottom, is a histogram to visualize how many
times the certain knot was used for all runs.

The model we tested had spaced out the knots evenly
throughout the spectra and made its own choice when
the knots should be turned on or off. Figure 4 illustrates
the height of each bin which we can use the sum of the
heights for all the bins with the y-axis ≥ 1 and divide by
the height of the bin at zero to get a log Bayes factor of
around 1.3.

VI. NEW PROGRESS

After familiarizing with westley and confirming it’s
competence, the following steps were to start fitting
different simple power-laws and broken power-laws. I
created a script that fast tracked our analysis of how
westley’s generic fitting works on different amplitudes
ΩGW for both simple and broken power-laws. Each trial
had a sample of 100 with amplitudes covering the range of
10−7 to 4x10−7 and each trail went through 106 MCMC
iterations. In the following sections I explain the scripts
being used and how each model, simple power-law and
non-power law, behaved as predicted with the generic
fitting.
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A. Code

The generic fitting built upon the hybrid analysis of
pygwb takes around 20 minutes with only one sample at
an MCMC iteration of 105 and the time increases as the
samples and iterations increase. I began the past weeks
analysis with a for loop to run several samples to see
how different ΩGW power-laws behaves with our outputs:
SNRTOT (eq.(2)), and ln(BF )(eq.(3) and (11)), and the
error on that Bayes Factor.

This turned to be an inefficient route as the job’s run
time went as long as a full work day. To improve our
analysis’ efficiency I learned how to make as script to
run with LIGO’s cluster in the background while my
computer was in sleep mode. This sped up our project
timeline and allowed for a greater sample size and a more
detailed MCMC.

B. Simple Power law

For simple power laws we expect that ΩGW and de-
tection have an equivalence correlation. The log Bayes
factor is our reference of how strong the detection is since
we use the number of samples N that have 1 or more
knots turned on over the number of samples with no
knots turned on eq.11. In figure 5, we see that as the
amplitude increases so does the log Bayes factor.
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Figure 5. Here we have a simple power law of different am-
plitudes compared to the ln(BF ) provided by westley. As
amplitude increases the corresponding Bayes factor recipro-
cates. As a product of this relationship, it is confirmed that
our genetic fitting is working correctly.

Besides a few outliers, the general trend validates our
prediction confirming the code is working. Once we had
the right trend I tested our Bayes factor method to the
SNR method (2) that is currently used with SGWB mod-
els, illustrated in figure 6.
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Figure 6. The figure shows our results from our 100 sam-
ple westley run. It is known that ln(BF) is proportional to
SNR2. Focusing on SNR2 ≥ 10 and ln(BF ) ≥ 2, our data
depicts the linear relationship of SNR2

TOT to ln(BF).

From the SNR and Bayes factor results we expected
there to be a linear relationship between ln(BF ) and
SNR2

TOT . The figure above indicates the expected rela-
tionship within our sample, this verified the proficiency
of our method. After westley worked adequately with a
simple power law we then moved on to a broken power
law.

C. Non-Power law

A broken power law is defined by a peicewise func-
tion were the different power-laws’ boundaries are the
“breaks” in the function. To switch the simple power
law model to a broken power law model I changed the
fknee parameter of the code from 10Hz to 50Hz based on
my group partner’s project. At 50Hz there is a barely
any detection of gravitational waves therefore, this test
was to indicate if westley could or could not distinguish
between simple power laws and broken power laws.
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Figure 7. We show the ln(BF) comparing a broken power law
model to just a power law mode. The majority of ln(BF) is
localized at 0 resulting in no distinction between simple and
broken power-law from westley.

From figure 7, despite the change in ΩGW the log Bayes
factor is localized at 0 for the majority of the samples.
From this we concluded that westley can not differenti-
ate a simple power law to a broken power law. Because
of this we know that our fitter is working accurately and
can move onto the next part of the project.

VII. NEXT STEPS

From westley’s performance of the passed trials the
next step is conduct larger scaled runs at a faster pace us-
ing Condor. I will add more iterations to the model and
run the samples in parallel to cut our job time further.
These runs will provided a better confirmatory analysis
of westley’s performance. We will also conduct trails
to prove that we can detect non-power law SGWs and
then merge my project with Taylor Knapp’s project. To-
gether our projects will answer what type of shape can
the SGWB have and at what point does SGWB have
”the shape” compared to a simple power law?
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