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Neutron stars have long been a point of interest in astronomy due their extreme qualities. Of these,
the core of these super-dense star remains of especially large interest. Due to the extremely high
densities that are present inside of these objects, the way matter moves and acts is unknown. At the
Laser Interferometer Gravitational-Wave Observatory (LIGO), this knowledge is very important as
it would give data we collect on gravitational waves much more power in terms of deducing properties
of the neutron stars that cause them. We hope to be able to, through the course of this project, see
if possible relations between gravitational wave data we collect and neutron star properties can be
found without necessarily knowing how matter acts in these super-dense states with what we call
“Universal Relationships”. We aim to test these relationships and see if they truly hold regardless
of the Equation of State (EoS) that controls the relation between pressure and density in neutron
stars rigorously so as to ascertain their validity and reliability. With this, we will be better able to
collect and restrict neutron star measurements if these relations prove to be fruitful in their utility,
and gain insight into possibly incorrect assumptions about how matter behaves in neutron stars if
these relationships prove to be less coherent than previously thought.

I. PROGRESS MADE

A. Analysis

After many of the efforts detailed in my previous
report, we are now in a great place to start testing
the validity of different universal relations. Since
this project is largely a continuation and improve-
ment on previous research done with parametric
EoS, our analysis will largely mirror that of Ref. [1].
The first thing I needed to get working was a fit

that could be applied on upwards of one-thousand
different EoS models at once. This was done us-
ing a linear least-squares operation within the scipy
package as detailed in Ref. [2] for a majority of our
relations. However, some of thee relationships use
nonlinear fitting, and as such are much more a source
of trouble. This operation was also able to provide
us with the much needed residuals of the individual
EoS from the fit. Fig. 1 shows some example plots
of what we’ve been able to make so far.
Of course, these residuals mean nothing unless we

come up with some sort of metric to measure them
to, so in this we have decided to compare them to
the uncertainty in measuring parameters from LIGO
data. This way we can accurately measure if the
uncertainty of our universal relations are adequately
smaller than than the uncertainty in our experimen-
tal measurements. As such, we hope to gain insight
into whether or not these relations provide any ad-
ditional constraints to our collected data.
In order to find this info, I have used the in-

tegrated LSC package Bilby in order to infer our
uncertainty in parameter estimation as detailed in
Ref. [3]. This involves injecting a mock signal into
simulated LIGO/Virgo/KAGRA data to replicate

the process of determining parameters from a phys-
ical gravitational-wave signal. The process uses the
LIGO cluster and takes many days to run, and so
at the time of writing this I have many runs cur-
rently ongoing to try and constrain our measurement
uncertainties at many different points in parameter
space.

B. Optimizations

While analysis is our first and foremost goal, I
have also made progress in the general functionality
of my code. The first thing I would like to discuss is
the overall generalization and expansion of my code
for greater modularity and future use. After ensur-
ing the basic functions of my code, such as data re-
trieval and cleaning, I moved on to allowing results
to be repeatable by seed implementation. While the
random sampling of models allowed the models we
analyzed to be a very good generalization of the pop-
ulation of models as whole, to ensure that we both
could conduct much more in-depth analysis of cer-
tain sample groups and allow future readers to verify
our data, seed implementation and continuous doc-
umentation of these seeds and their results became
paramount. Along with these changes, I also added
functionality to skip random sampling all together
if the user provides a list of EoS they would like to
use for data gathering.

After this, my research mentor had noticed that
three-dimensional array of data returned by our code
can be very hard to share and discuss with someone
less familiar with how the code is set up. Due to this,
I also added implementation to allow users to return
all the data as a dictionary rather than an array with



2

(a) Compactness (C) vs Deformability (Λ)

(b) Moment Of inertia (I) vs Deformability (Λ)

Figure 1: 2 universal relation candidates plotted
with their respective fits and residuals

added labels for the data. Unfortunately, this makes
the data much more difficult to handle when it comes
to analysis, so the functionality of the arrays are still
invaluable, but this extra customization allows users
to get more out of our tools.

However, the single biggest change I’ve made to
generalize my code is allowing the user to provide
what criteria they would like all sampled EoS to
meet. While my code beforehand had the ability
to provide a number for the minimum weight they
would like their models to be, this has been con-
densed into the user providing a list of different func-
tions detailing any and all statements they would
like to be met by any model they analyze. This is
a huge improvement as it future-proofs any possible
decisions we may want to make about what specific
EoS we want data from with essentially any possible
calculation we can do with the data provided.

II. PROBLEMS ENCOUNTERED

Overall I think the biggest problem I have encoun-
tered and overcame was making all the improve-
ments to my code for data retrieval and cleaning.
With more and more new features, it became in-
creasingly difficult to stay on top of both all the
things I wanted my code to do, but also how they
work together.

I also encountered many problems with getting my
least-squares fits to work. Due to the fact that I was
fitting multiple plots, I had to construct a way to
be able to concatenate all data points together and
properly make a matrix out of them in order to solve
the linear system. This took some trial and error,
but luckily the linear nature of the program made it
much easier to learn.

This was soon overshadowed by the nonlinear
fits needed for testing a universal relation of Λs =
(Λ1 + Λ2)/2 and Λa = (Λ1 − Λ2)/2 in which each
Λ is decided from a chosen mass ratio q. The main
problem encountered with this specific plot was the
high variability in the amount of data points that
could be gathered for each EoS. Depending on the
mass ratio and volatility of the EoS used, it was pos-
sible for models to have anywhere from 100 to 3 data
points. While this was overcame with careful inter-
polation, there was then the problem of learning to
use a nonlinear least-squares function for fitting and
analysis. The fit for this relation followed 1, a func-
tion with many different parameters that was tough
to get a handle on, but this as well was something I
got more used to handling.
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As alluded to in the previous section, properly an-
alyzing the data and coming up with the proper met-
rics to carry out said analysis has proved tough. The
σ values needed to properly contextualize our data
take weeks to create through Bilby runs, and this is
only for one relation. Getting proper estimates for
our measurement variance eats up a lot of time and
might be a limiting factor into the future as well.

III. REMAINING GOALS

While we still have a ways in terms of getting all
of our data in forms we’d like for analysis, we still
have to be able to provide appropriate insight on the
goodness of our universal relations. This is where
the bulk of our remaining goals lie.
The first goal I’d like to get working before getting

into the main portion of the analysis is making sure
I can implement nonlinear fits into my code. This
both allows me to create fits for plots that may not
be linear and improve the fitting on plots that may
have worked with linear fitting. of course, this is
only a precursor to the main goal we still are yet to
achieve.
After that, we still have much to do in ensuring the

analysis of our data is a holistic view of the validity
of our universal relations. Our current formulation

follows the equations 2 and 3, where we hope to come
up with an overall χ2 quantifying the goodness of our
relations that depends on our parameters αi at each
data point xj .

χ2
EoS(αi) =

n∑
j=1

(Fit(αi, xj)−Model(xj))
2

σ2
j

(2)

χ2(αi) =

N∑
k=1

χ2
EoS,k(αi) (3)

Currently, the only missing part of this formula-
tion is σ. We would like this value to not only be
correlated to how much variation there are in mea-
surements of some values, but we’d also like sigma to
encode the physical likelihood of any model. Ideally,
the less physically likely a model is, the less it would
contribute to our overall χ2 value. Both of these as-
pects are an important part in properly interpreting
our data and are the last large parts of our analysis.

Outside of this, due to the sheer amount of dif-
ferent models being used, I’ll also want to clean up
the readability of many of my graphs for publication,
as well as organize my functions and graphs into an
organized and easy to retrieve repository.
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