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Neutron stars have long been a point of interest in astronomy due their extreme qualities. Of these,
the core of these super-dense star remains of especially large interest. Due to the extremely high
densities that are present inside of these objects, the way matter moves and acts is unknown. At the
Laser Interferometer Gravitational-Wave Observatory (LIGO), this knowledge is very important as
it would give data we collect on gravitational waves much more power in terms of deducing properties
of the neutron stars that cause them. We hope to be able to, through the course of this project, see
if possible relations between gravitational wave data we collect and neutron star properties can be
found without necessarily knowing how matter acts in these super-dense states with what we call
“Universal Relations”. We aim to test these relationships and see if they truly hold regardless of the
Equation of State (EoS) that controls the relation between pressure and density in neutron stars
rigorously so as to ascertain their validity and reliability. With this, we will better be able to measure
neutron star properties. If these relations prove to be fruitful in their utility, and gain insight into
possibly incorrect assumptions about how matter behaves in neutron stars if these relationships
prove to be less coherent than previously thought.

I. BACKGROUND

A. Motivation

Through gravitational waves (GWs), great strides
have been made in constraining neutron star (NS)
observables, such as mass, radius, tidal deforma-
bility, etc. However the cold, supranuclear matter
present inside neutron stars follows a relationship
between pressure and density, an equation of state
(EoS), that is unknown at this current moment.
This “nuclear EoS” is of great interest to many fields,
but is especially viable to LIGO as it would allow
the construction of relations between different NS
observables. But, without the ability to easily re-
construct these densities in a traditional laboratory
environment, NS observables remain our best path
of insight into this EoS. However, this gives rise to
many problems, as limitations in GW detection gives
rise to many degeneracies in NS properties and be-
tween NS properties and the nuclear EoS, making it
difficult to ascertain nuclear EoS characteristics.

However, Yagi and Yunes [1] have formulated can-
didate relations between NS observables that may
hold regardless of the nuclear EoS that character-
izes the makeup of NSs. Some of these relationships
include a relation between moment of inertia, tidal
deformability, and the quadrupole moment (“I-Love-
Q”), a relation between compactness and tidal de-
formability (“C-Love”). With these we will also be
inspecting a relation between the ratio of pressure
and density in the center of a NS versus its total com-
pactness [2]. These so called “Universal Relations”
(URs) are especially powerful as they not only would
allow us more inference into the nature of the nuclear
EoS, they would also greatly empower the measure-
ments from LIGO by allowing measurements of tidal

deformability to be related to many other NS prop-
erties we’d otherwise wouldn’t be able to get strong
restrictions on. It is with these strengths and others
that many have been motivated to test these pro-
posed URs and examine their validity.

B. Previous Work

In order to test if these proposed relationships
are actually universal and thus EoS-agnostic, exper-
iments have been conducted that have created these
relations under many different test EoS in order to
assess if high variability in EoS results in high vari-
ability in the relations [2, 3]. These experiments
were done with “parametric” EoS, meaning that the
method in which EoS were generated was by choos-
ing a form for the relation with parameters that can
be changed to create many different EoS models.
Largely, 2 models were used, the spectral model and
the piecewise-polytrope model.

The spectral model, as detailed by 1, convention-
ally has x ≡ P/P0, where P0 is the smallest pres-
sure considered in analysis, and n chosen to be 3
such that the parameters to be generated are then
{γ0, γ1, γ2, γ3}.

P = KρΓ(x) where Γ(x) =

n∑
i=0

γi(log(x))
i (1)

The piecewise-polytrope model as detailed by 2, on
the other hand, picks ρ1 and ρ2 to fit current mod-
els of the nuclear EoS, K1 is fit to some chosen
P1 ≡ P (ρ1), and K2 and K3 are chosen to ensure
continuity such that the parameters to generate are
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then {Γ1,Γ2,Γ3, P1}.

P =


K1ρ

Γ1 : ρ < ρ1
K2ρ

Γ2 : ρ1 < ρ < ρ2
K3ρ

Γ3 : ρ2 < ρ

(2)

Both of these methods attempt to create EoS
models with as few assumptions as possible; however
both methods require checking any created models
to ensure that Eq.3 is satisfied. This equation states
that the EoS must give rise to materials that are
stable such that the speed of sound is never nega-
tive and obey causality such that the speed of sound
is never faster than the speed of light.

0 <
dP

dρ
= c2s < c2 (3)

This helps ensure that the models being drawn
aren’t being flooded by EoS that are physically im-
possible. However, with these methods having the
EoS follow a set form, there is reason to believe
the models being tested are over-constrained such
that proposed URs are not being tested thoroughly
enough.
Ref. [4] details how, when compared to nonpara-

metric EoS, the models detailed previously may be
susceptible to a rigidity in having set forms that dis-
allows a thorough examination of the validity of URs
under a wide enough scope of EoS. Nonparametric
EoS are defined by having no set form through which
parameters are changed, and are instead generated
through the use of Gaussian processes (GPs). This
method involves creating a Gaussian distribution of
very many dimensions, each corresponding to a dif-
ferent value of density, that then produces a distri-
bution of values ϕ as given by Eq. 4. This effectively
allows creation of of an EoS model where each value
of density has many different possible values of pres-
sure while still keeping the model as a whole stable
and causal.

ϕ = log

((
c

cs

)2

− 1

)
(4)

With this, there is substantial motivation to once
again test URs, but under nonparametric EoS. This
is the premise of my research and will form the ma-
jority of this report. Section II will go over how data
is retrieved and analyzed for goodness in uncertainty.
Section III will then present the results of my efforts
before discussion of our findings in Section IV.

II. METHODS

In order to analyze our relations, each EoS would
be used to create 200 model NSs at different cho-

sen central densities, where then the EoS was used
to simulate the NS from the inside out using the
Tolman–Oppenheimer–Volkoff equation detailed in
Eq.5. This equation details the balance between the
pressure gradient and gravity in the regime of gen-
eral relativity that takes place inside NSs to give
them their structure.

dP

dr
= −Gm

r2
ρ

(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

(5)
Most relevant quantities for different NSs were al-
ready calculated using this method for different EoS
before starting this project.

A. Analysis

In our analysis, we will be investigating 5 different
possible URs. These relations are as follows:

1. Moment of Inertia vs. Tidal Deformability vs.
Quadrupole Moment (“I-Love-Q”)

2. Compactness vs. Tidal Deformability (“C-
Love”)

3. Radius vs. Tidal Deformability at fixed mass
(“R-Love”)

4. Anti-Symmetric vs. Symmetric Tidal De-
formability (“Binary Love”)

5. Ratio of Pressure to Density in the core (αc)
vs. Compactness

For each of these relations, we will be using dimen-
sionless forms for tidal deformability (Λ), moment of
inertia, quadrupole moment, compactness, and αc.

Λ ≡ λ
1

M5
(6)

Î ≡ I
c4

G2M3
(7)

Q̂ ≡ Q
c2

G2M3
(8)

C ≡ M

R

G

c2
(9)

αc ≡
P (ϵc)

ϵc
(10)

I-Love-Q, being made of up 3 different values, will
then have 3 corresponding relations, Î − Λ, Q̂ − Λ,
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and Î − Q̂. As well as this, the anti-symmetric (Λa)
and symmetric (Λs) tidal deformabilities are defined
in Eq. 11

Λa =
Λ2 − Λ1

2
and Λs =

Λ2 + Λ1

2
(11)

To quantify the variability that exists within our
candidate URs, we will be using a weighted Chi-
squared test. For upwards of 1000 EoS, we find their
individual χ2 value and use their sum as a measure
of variance within the UR. Every EoS is assigned a
probability of how likely the model is given current
data in astrophysical observations of NSs that then
corresponds to a weight w.

χ2(αj) ≡ ⟨χ2(αj)⟩ =
∑
EoS

wEoS∑
wEoS

χ2
EoS(αj) (12)

χ2
EoS(αj) =

∑n
i=0

(Fit(xi,αj)−ModelEoS(xi))
2

σ2
i

(13)

For our analysis, we will be mostly concerned with
the normalized χ2 value wherein the value is divided
by the number of degrees of freedom present in the
analysis. In this analysis, the use of weights in our
Chi-squared test means our degrees of freedom will
simply be the number of data points for one indi-
vidual EoS subtracted by the number of parameters
present. It then becomes are goal to see if the nor-
malized χ2 values meet the criteria given in Eq. 14.

χ2

Ndof
≪ 1 (14)

For the first 3 relations we will be analyzing, the
model that we will be using for their fit is detailed
in Eq. 15.

y = Kyxx
α 1 +

∑3
i=3 aix

−i/5

1 +
∑3

i=3 bix
−i/5

(15)

We choose α to be 2/5, 1/5, 2, or −1/5 for Î − Λ,

Q̂−Λ, Î− Q̂, and C−Λ respectively. This equation
is referenced from Ref. [3]. Binary Love and αc vs.
C, however, use different equations for their fits.
Being that Binary Love depends on the mass ratio,

q, the equation used is instead detailed in Eq.16.

Λa = 1−q10/(3−n)

1+q10/(3−n)

1+
∑3

i=1

∑2
j=1 bijq

jΛ−i/5
s

1+
∑3

i=1

∑2
j=1 cijqjΛ

−i/5
s

Λα
s (16)

For our analysis, we decided to investigate q =
0.90, 0.75, 0.50 and chose n = 0.743 and α = 1. This
is once again in order to mirror Ref. [3] and make our
analysis of nonparametric EoS simple to compare to
parameterized EoS.

for αc vs. C, we used a linear relation given by
Eq. 17. This is to mirror Ref. [2] in their analysis
with parameterized EoS.

lnαc =

6∑
j=0

ajC
j (17)

Parameters for these equations were found by im-
plementing a scipy [5] least-squares algorithm to
minimize the function given by Eq. 13.

To give our residual values context, the σ values
we will use as present in Eq.13 will be determined
by the uncertainty in parameter estimation through
LVK techniques [6]. In this manner, we will be able
to clearly see if the uncertainty present in URs is
less than the uncertainty in inferred parameters and
thus reliable enough to implement into analysis. To
find the uncertainty in parameter estimation, I used
the integrated LSC package Bilby [7]. This involves
injecting a mock signal into simulated LIGO-Virgo
data to replicate the process of determining param-
eters from a physical GW signal.

B. Data Retrieval and Cleaning

Due to the sheer amount of variance allowed in
nonparametric EoS, many of the NSs created were
not relevant for analysis. This was largely due to
two possible reasons. First, some EoS were unable to
create NSs at some central densities, leading to nu-
merical artifacts in our data. These artifacts largely
happened at very low central densities, and by ex-
tension, low NS mass. Second, a NS created by an
EoS would be infeasible to observe and thus would
be extraneous in the context of applying our findings
to gravitational-wave observations. This can be due
to a created NS model being in an unstable configu-
ration, and would likely revert to a stable one in the
timescale much smaller than our observations. This
could also be due to a NS model being of much lower
mass than any observed NS.

Unstable configurations of NSs are defined as be-
ing any models where the total mass of the star de-
creases as the central density is increased for our
modeling. In plots of mass versus central density,
these ares of negative slope are referred to as ”un-
stable branches”. Conversely, areas of positive slope
are ”stable branches”. Due to the variation allowed
in construction of nonparametric EoS, many models
can have multiple stable and unstable branches.

To simplify analysis and ensure removal of any
data that is not astrophysically relevant, data is only
gathered from the first stable branch. That is, the
stable branch corresponding to the highest possible
mass values for the EoS model. Along with this,
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we also limit our data from NS models with M ≥
0.8M⊙. Both of these limitations serve to focus our
analysis on NS configurations that can realistically
be astrophysically observed.

III. RESULTS

For our analysis, I decided to use 100 EoS models
cuts on the weight such that EoSs with only 0.014%
of the maximum EoS weight or above were analyzed.
In the future we may want to repeat this process
with a greater number of EoS models, but these re-
sults aim to give a preliminary insight into the na-
ture of each of our URs.

A. I-Love-Q

Fig.1 shows the universal relation we believe to
be strongest, I-Love-Q. The relations between all 3
observables is very strong, with very small deviations
from the fits. Interestingly though, we see that Q̂−Λ
has a value 2 to 3 orders of magnitude larger than
the other relations.

UR χ2

Ndof

Î − Λ 7.5492e-06

Q̂− Λ 0.0011

Î − Q̂ 4.2307e-05

B. C-Love

Out of all URs considered, C-Love had the most
amount of variance. While the relation itself as
shown in Fig. 2 doesn’t appear to break down, un-
like other URs, there’s a distinct lack of EoS models
that stick very closely to our found prediction.

χ2

Ndof
= 0.04381 (18)

C. Binary-Love

For Binary Love, shown in Fig. 3, our results were
the same order of magnitude as C-Love. However,
we observed the fit for q = 0.50 to be an order of
magnitude better than other mass configurations.

bq=0.50
ij =

 −14.08 15.92

63.22 −9.78

−147.23 −41.09

 cq=0.50
ij =

 −10.79 10.03

73.327 −37.84

−144.72 −23.86


(19)

bq=0.75
ij =

 −17.06 14.56

62.54 −8.03

−128.02 −50.42

 cq=0.75
ij =

 −76.00 95.19

69.23 −38.24

−105.33 −23.22


(20)

bq=0.90
ij =

−66.83 71.74

45.77 −33.76

−55.11 9.02

 cq=0.90
ij =

−24.88 25.41

44.99 −36.26

−52.65 16.38


(21)

UR χ2

Ndof

q = 0.50 0.0010

q = 0.75 0.0111

q = 0.90 0.0121

D. αc-C

While the variance for αc vs. C is less than C-
Love, the relation shown in Fig. 4 still shows quite a
bit of variance. The parameters used for the fit are
given in table II.

Figure 4: Pressure divided by density in the core
(αc) vs Compactness (C)
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y x α Kyx a1 a2 a3 b1 b2 b3

Î Λ 2/5 2.07 -3.01 -5.01 -4.30 -9.01 2.82 −6.46(10−3)

Q̂ Λ 1/5 2.44 4.43 -5.56 5.24 2.40 10.39 -3.83

Î Q̂ 2 −6.51(10−3) 7.62 −3.30(101) 4.72(101) -2.09 2.01 9.70(10−1)

C Λ -1/5 3.2510−1 −5.09(102) 8.21(102) −8.89(102) −2.86(102) 5.09(102) −7.18(102)

Table I: Parameters used in Eq. 15 for I-Love-Q and C-Love fits.

(a) Moment of Inertia (I) vs
Deformability (Λ)

(b) Quadrupole Moment (Q) vs
Deformability (Λ)

(c) Moment of Inertia (I) vs
Quadrupole Moment (Q)

Figure 1: I-Love-Q plot with dashed lines corresponding to best least-squares fit of equation 15

χ2

Ndof
= 0.01279 (22)

IV. CONCLUSION

Viewing our results from the perspective of em-
powering LIGO data, we find that many of the uni-
versal relations are suitable for use alongside current
techniques. I-Love-Q in particular is a very strong
with normalized χ2 values coming out to be on the
order of 10−5. However, to give these numbers more
meaning it will be imperative in the future to also
perform similar Chi-Squared tests with parametric
EoS. This way we hope to be able to dictate more
clearly the exact quality of these URs. However,
even without these measurements, there are a few
general statements we can make about the relations.
Namely, we see that URs in the general domain

of hadronic EoS with no moment-of-inertia features

seem to hold fairly well. We will also be interested
in seeing how these URs fair under hybrid EoS, but
from our preliminary results, there is not much con-
fidence in URs outside of I-Love-Q holding in such
a domain. Whether or not I-Love-Q breaks down or
not in these regimes is less apparent, and thus fur-
ther tests will be very important going forward to
deduce the real strength of I-Love-Q.
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UR a0 a1 a2 a3 a4 a5 a6

αc − C −1.30(101) 3.39(102) −4.63(103) 3.36(104) −1.33(105) 2.27(105) −2.25(105)

Table II: Parameters used in Eq. 17 for the αc − C fit.
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(a) Compactness (C) vs Deformability (Λ) (b) Radius (R) vs Deformability (Λ)

Figure 2: C-Love and R-Love plots with dashed lines corresponding to best least-squares fit of equation 15.
R-Love was constructed through C-Love using R = M/C with a fixed M . R-Love is best used when one

may have acute knowledge on the mass of a neutron star, but less so on the tidal deformability and radius.
However, since deformability and mass are not independent of one another, the relation is only of use in

the space given by the overlaid scatter plots.
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Figure 3: Anti-Symmetric Tidal Deformability (Λa)
vs Symmetric Tidal Deformability (Λs)
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