LIGO

Development Status of HOM Ring Heater <u>G2201732</u>

Huy Tuong Cao

Ryan Anderson, Tyler Rosauer, Aiden Wilkin, Aidan Brooks, Jon Richardson

LIGO Systems Meeting, September 26, 2022

Motivation #1: Reduce Point Absorber Loss

- Address **non-uniform loss** induced by point-absorbers
- Point-absorbers scatter TEM00 mode into higher-order modes
- The 7th order mode scattering loss is resonantly enhanced due to cavity degeneracy.
 - Brooks et al. 2021 (<u>P1900287</u>)
- Loss of power from TEM_{00} to TEM_{mn}

Simulated arm cavity scan (A. Brooks, <u>G2101232</u>)

Shifting 7th Order Mode Resonance

- HOM RH to actively shift the resonance away from TEM00, targeting g_{mn}
- Removing co-resonance to reduce arm loss
 - Richardson et al. 2021 (<u>P2100184</u>)

Effects of RHs on HOM resonance condition (G2101232)

Impact of shifting 7th order mode resonance

Simulated arm loss distribution due to point absorbers (Richardson, P2100184)

Motivation #2: High Power Operation

Deformation by 1W absorption (H. Yamamoto)

- Post-O5 arm cavity power target: 1.5 MW
 - Report of LSC Post O5 Study group (<u>T2200287</u>)
- Residual surface deformation after correction with barrel RH has a steep edge rise.

Motivation #2: High Power Operation

 Uniform coating absorption cannot be fully compensated with current TCS above aLIGO full power → Severe PRG loss (<u>G2200743</u>)

HOM Ring Heater Goals

Achieving the Right Deformation

The HOM Ring Heater

- Annular heating pattern projected onto front surface of test mass
- Consists of an annular heater and a reflector.
- Reflector interior:
 - Diamond-turned surface
 - Polished to < 10 nm RMS
 - Thin-film gold coating deposited
- Reflector exterior:
 - Bead-blasted to increase effective emissivity and reduce specular reflection at 1064 nm

Ring Heater Cross-section

- Truncated asymmetric compound elliptical reflector
 - Constructed using non-imaging edge-ray technique for maximum delivery efficiency to a target from a source of finite dimension

Irradiance Profile

Results simulated with COMSOL ray tracing:

- Total source power : 19.7 W
- Total delivered power : 16.8 W, Efficiency: 85.4%

11

Surface Deformation

Compensation at 500 mW Absorption

Fabrication: Heater Element

- 8 elements to form a ring
- Material: Aluminum Nitride (same material used for SR3 heater)
- Gold coated on all sides apart from front surface
- Integrated RTD for temperature monitoring
- Anticipated maximum operating power: 30 W, T = 653 K (380 °C)
- Maximum rated temperature: 400°C
- Currently in fabrication. Expected delivery: mid November 2022

Heater Element Resistance Consistency

- Variation in resistance between different batches: ±20% (63.2-94.8 Ω)
- Variation in resistance of elements from the same batch: ±5%
- Causes variation in total power radiated from each element

- Avoid having any pair of adjacent elements with mean resistance 8% higher than other element
- Conclusion: Heater elements can be powered by 2 x 24V DC supplies, same as existing RH.

Fabrication: Reflectors

- Consist of 2 halves
- Material: Aluminum 6061
- Reflector surface produced with diamond turned machining and thin-film gold coated
- External facets are bead-blasted to increase emissivity and reduce 1064 backscattering
- Coatings are being considered for future designs to further reduce backscattering risk (e.g. black nickel)
- Beginning fabrication. Expected delivery: mid December 2022

Fabrication: Assembly

Macor spacer to avoid direct contact with aluminum

Backscatter Analysis (T2200238): Scattering from Reflectors

- Large angle scattering of 1064nm from ETM to reflector then scatter back onto ETM
- Assume large angle BRDF: (<u>G070240</u>):

$$BRDF = \frac{\alpha \cos \theta}{\pi}, \ \alpha = 10 \ ppm, \ \theta \in [62^\circ, 72^\circ]$$

 \rightarrow Power fraction scattered into reflector: 0.072 ppm

- Use ray tracing to estimate power fraction returned to ETM: 57%
- Most of these rays scattered back at large angle.
 Only a small portion can scatter back in to TEM₀₀
 - Use reciprocity relation (<u>T940063</u>) to compute fraction of power scattered back in IFO beam:

$$\frac{dP_{scatter}}{P_{ifo}} = 1.36 \times 10^{-24}$$

Scattering from Exterior Surfaces

Front surface			
$ heta_i$	$ heta_{f}$	$\delta I_{ m sc}/I_{ m mb}$	
		bead-blasted aluminium	black nickel coated
$\theta_2 = 75.5^{\circ}$	$\theta_1 = 80.6^{\circ}$	1.93×10^{-25}	2.57×10^{-26}
Inner diameter, front reflector			
$\theta_3 = 74.0^{\circ}$	$\theta_2 = 75.5^\circ$	1.28×10^{-25}	1.70×10^{-26}
Inner diameter, rear reflector			
$\theta_5 = 57.1^{\circ}$	$\theta_4 = 67.4^\circ$	2.00×10^{-24}	2.66×10^{-25}

- Large angle BRDF of bead-blasted Al: 0.03 sr⁻¹(<u>source</u>, measured BRDF at 3.39 micron, BRDF, most likely higher at 1.064 needs measurement)
- Large ange BRDF of black Ni coated: 4e-3 sr⁻¹(<u>E0900028</u>)

Total Projected Backscattering Noise in DARM

- Backscatter from reflector introduces phase
 noise & radiation pressure noise
- Noise projection assumes ST2 BSC-ISI ASD (<u>G2000186</u>)
- Backscattered from reflective component is the dominant source.
- At 10 Hz:
 - Total bead blasted Al: 2.90e-27
 [1/sqrt(Hz)]
 - Total black Ni coated: 2.73e-27 [1/sqrt(Hz)]

Mounted to lowest section of suspension cage

HOM RH Mounting

- Proposed mounting location: bottom of the Quad suspension cage.
- Estimated weight of HOM RH prototype: 42 - 45 lbs due to structure's large outer diameter (OD) to facilitate machining.
- Total weight can be reduced by approximately 50% in final design by reducing OD.
- Question: How would mounting of the HOM RH on the Quad cage affect BSC-ISI?

Flat sides for attaching interfacing arms

Sensitivity to Position Error

 \rightarrow Surface deformation is not strongly sensitive to uncertainty in position

Testing Plan

- In-air optical measurement of irradiance profile:
 - Using thermal camera to verify irradiance profile from HOM RH
 - **Status**: Constructed, currently improving sensor calibration
- UHV compatibility testing:
 - RGA outgassing measurement using calibrated Ar/He leak
 - **Status**: Vacuum system under construction

In-air test setup for HOM RH (SURF report: T2200205, T2200206)

Testing Schedule

Next steps:

- Complete noise analysis of HOM RH and specify electrical requirements.
- SIS simulation of O4 cavities with HOM RH to quantify effects on point absorbers and uniform absorption
- UHV testing of heater elements in November
- Prototype assembly and optical testing before December holidays.
- PDR and final production design are contingent on testing results

Motivation for O4b Delivery

- Point absorbers cause significant loss in arm power gain. Modeling of HOM RHs predicts a substantial loss reduction → allow pushing IFO to higher power in O4
- Using the HOM RHs in situ will be invaluable experience ahead of O5.

→ O4b experience will directly inform design of a more sophisticated HOM RH for O5 (UCR has already secured funding from the NSF)

Conclusion

- Prototype design and modelling finalized, currently in production; ready to start on mechanical / electrical interfacing work with support from LIGO Lab (under ADTR <u>M2200050</u>)
- Transition from ADTR to Detector Improvement (DI) is contingent on prototype testing results.
- Estimated cost as DI: \$75k-\$150k