

### **Instruments status**

B. O'Reilly for the LVK collaboration

Slides by: J. Driggers, A. Effler, F. Sorrentino, T. Sawada

### Summary of LIGO Improvement Goals



- 400kW circulating arm power (compare to ~200 kW in O3)
- Squeezed light efficacy 4.5dB (compare to 2-3dB in O3)
- 300m filter cavity for frequency dependent squeezing
- Low frequency technical noise reduction
  100 Hz



# Potential Resulting Sensitivity (LIGO)





h ~ 1/r

rate ~ r^3 \* T

### **LIGO Hanford**



### **High Power**

- O4 high power laser install complete (serves 100+ W to interferometer)
- Stable operation with 260+ kW arm circulating power achieved (c.f. < 200 kW in O3)</li>
  - Brief operation with ~400 kW circulating
- Upcoming commissioning will focus on stable high circulating power operation

### Squeezing

- 4 dB frequency independent squeezing achieved
- Installation of filter cavity for frequency dependent squeezing (including new buildings and vacuum system to house it) nearing completion

## **Low Frequency Improvements**

- Analog electronics and digital controls improvements to the actuation of most suspended mirrors
- In-vacuum upgrades to mitigate scattered light and improve mode matching recently completed

### **LIGO Hanford**





### **LIGO Hanford**

Filter cavity end mirror



High power laser

H1's potential sensitivity for O4, if source-unknown low frequency noise contribution is reduced by half during next several months of commissioning



# **LIGO Livingston**



#### DONE

- Technical noise improvements
- Recover freq-independent squeezing
- Laser upgrade
- output path improvements

#### TO DO

- double arm power
- freq-dependent squeezing
- more scatter reduction



# LIGO Livingston

**Technical Noise Improvements** 

- → Output septum window (between Signal Recycling Cavity and Output table) was removed
- → Scatter work (more baffles)
- → Controls improvements
- → Fixed ETMY ISI 1.2 Hz resonance
- → Better Output Mode Cleaner Photodiode amplifier and ADC

- → 130 Mpc w/o squeezing! (red trace)
  (early BNS warning time
  16s in O3 -> 28s now)
- → best "only" ~145 Mpc with 3dB freq independent squeezing (can get 4 dB but ~40% loss so anti-squeezing hurts)







# ITF control, working point tuning & first sensitivity

- HOM recycling in SRC generates large DC and fluctuations on dark fringe power (~1 W)
  - o improved by SRCL control with optical spring
- SRM automatic alignment by maximizing DCP, now full AA engaged
- tuning of thermal actuators (ETMs RH, DAS on ITMs CPs, PRM & SRM curvatures) to mitigate dark fringe power
- First calibration in DC readout: 2÷4 Mpc, mostly limited by control noises & OMC
- OMC damaged by fast flashes
  - ~80% losses
  - safety trigger recently improved





# Virgo

# FDS, residual installations, noise hunting

- FDS commissioning on external homodyne detector:
  - mitigation of technical noises
  - long term stability of SQZ level and FDS detuning.
- SQZ on ITF
  - aligned to OMC, ~90% matching
  - CC loop on B1, reduce FC longitudinal noise
  - next steps:
    - automatic alignment to OMC
    - FIS & FDS after OMC replacement
- ~2 wks downtime in November & December for
  - OMC replacement
  - point absorbers mitigation system
- Noise hunting to start in November
  - control noises first (SSFS, LSC & ASC couplings)
  - technical noises until February



# **KAGRA**



### **IFO** commissioning

- Shifting phases from instrument upgrade/integration to IFO commissioning.
- Realized stable FPMI control using DARM RF signal:
  - Continuous lock for 12.5 hours
  - Better than the 3 Mpc curve in the low frequency range
- Currently trying to realize PRMI and PRFPMI using DARM RF signal

### **OMC** and High Power Laser

- The preparation of OMC in November and tuning of the laser intensity stabilization system will improve in the high-frequency range.
- Noise curve will be available once they are ready.

### Preparations for O4 are generally progressing well.





- Scientists, Engineers, Technicians, and Students at LIGO, Virgo and KAGRA working to:
  - Finalize the installation of upgrades;
  - Commission the detectors to reach the expected sensitivities;
- Some technical uncertainties still remain, which may impact our schedule.
  (Potential risks)

# Summary

- Much work has been done on the instruments, but quite a bit remains to be done.
- Next few months will be critical for O4 sensitivity and schedule
- We will continue to update the schedule regularly: Next update November 15th.



Thank you for your time and attention.