

Les futurs détecteurs d'Ondes Gravitationnelles : objectifs scientifiques et défis techniques

David Shoemaker

MIT Kavli Institute – LIGO Laboratory Merci aux collègues de ET et CE pour les images

> 30 ans de GW à LMA 2022-11-24 G2202004

Étirement et compression de l'espace-temps = 'strain'

L'amplitude de la déformation des ondes gravitationnelles est $h = \Delta L/L$ $\Delta L = h L$ Grand L facilite la mesure de ΔL ; pour les détecteurs actuels L = 3 à 4 km, donc il faut détecter ~10⁻²¹ x ~10³ = ~ 10⁻¹⁸ m

Principe de base pour détecter les ondes gravitationnelles: un interféromètre de Michelson

- Un transducteur de 'strain' en 'Intensité lumineuse'
 → signal électrique
- Qu'est-ce qui détermine la sensibilité de ce détecteur ?
- Distance *L* sur laquelle le strain est détecté
- Résolution de la détection optique
- Forces stochastiques qui font bouger les miroirs, masquant les GW

Rai Weiss, '70s

L'infrastructure pour une mise en œuvre réaliste

- Une longueur suffisante des bras pour amener le strain induit par GW à un niveau mesurable (actuellement 3-4 km)
- La lumière laser de détection doit voyager dans un vide excellent (~ 10⁻⁹ Torr)
- Le diamètre du système de vide doit accueillir un faisceau de diffraction limitée sur 4 km (~ 1 m de diamètre; ~ 10 000 m³)
- Le système à vide doit être *droit*, à niveau et protégé de l'environnement humain et naturel (Excavation, plancher en béton, aligné à une précision de plusieurs mm sur 3-4km, et couvert)
- Salles expérimentales avec contrôle de poussiére et de température; bâtiments pour le personnel; bâtiment pour la science publique (~ 10 000 m²)

Les forces stochastiques sur les miroirs masquent les GW

- Supprimer la transmission physique des mouvements (sismiques, etc.) depuis l'extérieur via:
 - Virgo: 6 pendules en série, donnant ((f₀/f)²)⁶ isolation;
 à ressorts verticaux à basse fréquence;
 inverted pendulum legs
 - LIGO: 3 plates-formes asservies à 6 degrés de liberté, 4 pendules
- Gradients gravitationnels newtoniens dus à l'activité sismique
 - Peut aller sous terre (KAGRA, Einstein Telescope)
 - Limites sur la fréquence la plus basse pour les détecteurs au sol...
 il faut aller dans l'espace (LISA) pour cibler <1 Hz
- Concentrer le bruit thermique dans des bandes de fréquence étroites pour limiter l'impact sur la gamme des GW

Minimiser les forces stochastiques: Bruit Thermique

k_BT d'energie per mode
 (*A. Einstein, 1905*)

- Matériaux de basse pertes
- Construction monolithique

• Simple Harmonic Oscillator:

$$x_{rms} = \sqrt{\left\langle (\delta x)^2 \right\rangle} = \sqrt{k_B T / k_{spring}}$$

 $\Re(Z(f))$

Réparti en fréquence selon la partie réelle de l'impédance

$$\widetilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$

- Dans les meilleurs coating amorphes, le coating optique diélectrique a une perte *mécanique* assez grande
 - Quelques 10⁻⁴, contre 10⁻⁸ pour la substrat en silice
- Le théorème de fluctuation-dissipation dit que c'est là que se trouve la plus grande excitation thermique
- Le coating est la surface vue par le laser
- C'est la limite dominante des détecteurs dans la bande critique 50-200 Hz

Bruit thermique du coating

coating thickness $\left\langle \Delta x(f,T)^2 \right\rangle \approx \frac{2k_BT}{\pi^2 f} \frac{d}{w^2 Y} \phi(f)$ beam radius Y Levin Phys. Rev. D 57 659 (1998)

High Quality Optics

Le réseau mondial des detecteurs d'ondes gravitationnelles en 2022

Les améliorations de sensibilité augmentent le taux des événements détectables

- On capte l'amplitude des GW \rightarrow
- Le volume d'espace et donc les sources accessibles – croît avec ~(sensibilité)³
 - Sensibilité O3/O2 ~ 1.6
 - Taux d'événements ~ $(1.6)^3 = 4$
- Arrêts périodiques pour l'amélioration des instruments...
- mais jusqu'à présent, nous rattrapons

Binary Neutron Stars Events

- Nous avons un plan bien défini de 'upgrades' et d'observations
- O4: Les détecteurs Advanced LIGO, Advanced Virgo et KAGRA, devraient observer au printemps 2023, avec une portée de 100-150 Mpc pour Binary Neutron Star coalescences
- O5 est projeté pour ~2027, portée de 200-300 Mpc

La limite des possibilités de LIGO-Virgo

- Etudes sont bien avancées pour extraire le maximum possible sur 3-4 km
- 'Post-O5' détecteurs pourraient livrer encore un facteur 2 en portée
- Servent aussi de prototype pour les détecteurs de la prochaine génération

AdV sensitivity evolution from O3 to post-O5

Futur plus lointain: que pourrions-nous faire avec des détecteurs GW 10 fois plus sensibles?

- Une plus grande sensibilité permettra une croissance énorme du nombre de sources observées (10x sensibilité:
 90 sources connues → quelques 10⁵ par an)
- La sensibilité augmente également la résolution des formes d'ondes, permettant des tests plus rigoureux de GR et des modèles plus détaillés des coalescences
- La localisation des sources s'améliore, pour aider l'astrophysique multi-messenger
- Une meilleure sensibilité autour de 1-3 kHz peut dévoiler la coalescence des étoiles à neutrons et donc la dynamique de la matière dense

Comment construire un tel détecteur 10 fois meilleur?

- Le rendre plus long –
 3 fois plus long → signal 3 fois plus grand
- Le mettre dans un endroit plus calme
- Améliorer la résolution optique

Tous les bruits optiques s'améliorent avec des bras d'intérféromètres plus longs

Shot Noise while maintaining bandwidth	$\frac{h_{\rm shot}}{h_{0\rm shot}} = \sqrt{\frac{2\rm MW}{P_{\rm arm}}}\sqrt{\frac{\lambda}{1.5\mu\rm m}} \left(\frac{3}{r_{\rm sqz}}\right) \sqrt{\frac{40\rm km}{L_{\rm arm}}}$
Radiation Pressure Noise while maintaining bandwidth	$\frac{h_{\rm RPN}}{h_{0\rm RPN}} = \sqrt{\frac{P_{\rm arm}}{2\rm MW}} \sqrt{\frac{1.5\mu\rm{m}}{\lambda}} \left(\frac{3}{r_{\rm sqz}}\right) \left(\frac{320\rm kg}{m_{\rm TM}}\right) \left(\frac{40\rm km}{L_{\rm arm}}\right)^{3/2},$
Coating Thermal Noise loss angle dependence	$\frac{h_{\rm CTN}}{h_{0\rm CTN}} = \sqrt{\frac{T}{123\rm K}} \sqrt{\frac{\phi_{\rm eff}(T)}{5 \times 10^{-5}}} \left(\frac{40\rm km}{L_{\rm arm}}\right)^{3/2}$
Residual Gas Noise facility limit	$\frac{h_{\text{gas}}}{h_{0\text{gas}}} = \sqrt{\frac{p_{\text{gas}}}{4 \times 10^{-7} \text{Pa}}} \sqrt{\frac{40 \text{km}}{L_{\text{arm}}^{3/2}}}$
	B P Abbott <i>et al</i> 20

17 18 .()(7 **34** ()44()()^{*}

Le bruit dû aux forces stochastiques est indépendant de la longueur des bras

- Bruit sismique; couplage acoustique
- Fluctuations de gravité newtonienne
- Mouvement dû aux bruits thermiques (pendule, substrat, coating)
- Forces dynamiques magnétiques et électrostatiques
- ...donc, on n'est pas punis pour avoir fait les bras plus longs.

La prochaine génération des détecteurs GW:

Cosmic Explorer Einstein Telescope

cosmicexplorer.org

- Contribution des États-Unis au réseau des observatoires de la prochaine génération
- Concept de type LIGO pour un seul interféromètre par site, sur la surface de la Terre
- Pour la technologie du détecteur, CE est à la base une version plus grande de LIGO

CE Infrastructure

- On 'achète' de la sensibilité avec les bras très longs et une large bande de sensibilité avec deux sites
 - 20 km est idéal pour observer la phase finale de coalescence d'étoiles à neutrons à ~ 2 kHz
 - 40 km est optimisé pour l'observation de tous les trous noirs binaires dans l'univers
- 2 Sites CE séparés par plusieurs milliers de km; observations communes avec ET
- On travaille sur des systèmes à vide moins chers (dominent le coût)
- Un seul détecteur interférométrique par site
- Des sites géographiquement appropriés peuvent être trouvés aux États-Unis (et au Canada, en Australie...)
- Construction sur la surface de la Terre
 - Avantages: moins cher et moins complexe que les travaux souterrains
 - Modifications futures de la disposition de l'interféromètre plus faciles
 - Désavantages: couplage avec bruit "sismique" de surface
 - Bruit de fond newtonien limite la sensibilité aux basses fréquences

CE Detector Design

- Les détecteurs CE initiaux utiliseront toutes les techniques de « LIGO Post-O5 »
 - Température ambiante, lumière de 1 micron, optiques en silice, frequency dependent squeezing
 - Coatings optiques amorphes ou bien cristallins grande question!
- On essaie de minimiser les développements techniques exigés
 - Exceptions: R&D sur des optiques plus grandes (~50cm plutôt que 34cm), des optiques à faible perte, des suspensions pour des miroirs de 320 kg plutôt que 40 kg)...

CE Status

- Le « Conceptual Design » est maintenant en cours
 - 7 proposals soumis à National Science Foundation (NSF) en Novembre pour les aspects variés de R&D
 - Contributions internationales (en idées et matériels)
 - Royaume-Uni, Canada, Allemagne, Australie actuellement
- Financement de la « phase de construction » de CE
 - Estimation: 2 x 10⁹ \$ pour la solution de deux détecteurs, 20km + 40km
 - Prévoit NSF comme source primaire de fonds
 - Autres: Department of Energy (DOE), financement privé, collaboration internationale

Chronologie de Cosmic Explorer

Einstein Telescope (ET)

Salles à une profondeur d'environ 200m

≥ 10km

ET a lancé l'idée d'un observatoire GW de troisieme génération :

EINSTE

SCOL

E

Une nouvelle infrastructure capable de recevoir des upgrades pendant des décennies
Une sensibilité au moins 10 fois meilleure que les détecteurs d'aujourd'hui

Éléments clés d'Einstein Telescope

Exigences

- Large gamme de fréquences
- Trous noirs massifs \rightarrow sensibilité basses fréquences
- Capacité de localisation
- Couverture uniforme du ciel
- Détermination de polarisation
- Haute fiabilité, disponibilité
- Rapport signal/bruit élevé

ET EINSTEIN

TELESCOPE

Spécifications

- Concept de multi-interféromètre, haute/basse fréquence
- Souterrain (bruit sismique)
- Cryogénique (bruit thermique)
- Forme triangulaire \rightarrow **Concept multi-détecteurs**

1064 nm beam 1550 nm beam fused silica optics silicon optics

10 km

• Bras 10km de longueur

Sites possibles pour ET

- Il existe actuellement deux sites, en Europe, candidats pour héberger ET:
 - Le site de Sardaigne, à proximité de la mine de Sos Enattos
 - Le site Meuse-Rhine Euroregion, près de la frontière NL-B-D
- Une troisième option en Saxe (Allemagne) se développe rapidement
- Les sites sont étudiés:
 - mesures de bruit sismique en surface, et dans la mine (Sardaigne)
 - Mesures des bruits magnétiques et ambiants
 - Caractérisations géophysiques et géotechniques

ET Status

- Le « Conceptual Design » est bien developpé
- Mis sur le ESFRI Roadmap en 2021 (European Strategy Forum on Research Infrastructures)
 - Italie (Lead); Belgique, Pays Bas, Pologne, Espagne participants
- Très actif R&D partout en Europe et UK
- Soutien financier maintenant pour R&D et caractérisation des sites
- Promesses pour l'avenir, depuis l'Italie et les Pays Bas, pour l'infrastructure
- Budget total ~ 2 x 10⁹ €

29

Chronologie ET

30

- L'observation GW par interférométrie marche, très bien merci!
- Il y a encore beaucoup de sources à observer
- Les « scaling laws » montrent la faisabilité technique de meilleurs détecteurs
- Le télescope Einstein est fortement et largement soutenu en Europe
 - Programme de R&D très actif, choix de site en cours
- Lancement du « proposal » pour Cosmic Explorer aux États-Unis
 - Démarrage d'une étude de « conceptual design »

Bonnes perspectives pour un réseau d'une nouvelle génération d'observatoires en mi-2030

Thank you!

Portée des détecteurs GW de nouvelle génération

The Gravitational Wave Spectrum

The binary neutron star signal, with and without the interferometer noise

35

Why 40km?

- Broadly speaking, the sensitivity of these instruments improves with length
- The bandwidth is, however, limited to roughly

$$\frac{c}{2L} = \frac{3 \times 10^5 \frac{km}{s}}{2 \times 40 \ km} \simeq 4 \ kHz$$

so making a detector longer than 40km would compromise its access to interesting astrophysics (i.e., post-merger signals and supernovae).

What can CE do?

Resolution of the optical sensing

- Shot noise ability to resolve a fringe shift due to a GW (counting statistics; *A. Einstein*, 1909) $h_{\rm sn}(f) = \frac{1}{L} \sqrt{\frac{\hbar c \lambda}{2\pi P}}$
- Radiation Pressure noise buffeting of test mass by photons increases low-frequency noise – use heavy test masses!

Test Mass Suspension

Lowest displacement noise to date (LIGO detector, O3, 2019–2020)

Sensitivity and performance of the Advanced LIGO detectors in the third observing run A. Buikema *et al.* Phys. Rev. D 102, 062003

Squeezing

- Heisenberg Uncertainty Principle dictates that precise values of phase, and amplitude, of light cannot be known at the same time
- $\Delta X_{\text{phase}} \Delta Y_{\text{amp}} \le h/2$
- We can choose however to e.g., know the amplitude less well and look more closely at the phase
- 'Squeezed light' used in O3 to reduce shot noise at the expense of more radiation pressure noise
- For O4, adding 'Frequency Dependent Squeezing' to reduce high-frequency shot noise, and low-frequency radiation pressure noise

Optical schematic For O4 (March 2023)

squeezer

O4 projected sensitivity (mid-2023)

43

Noise improvements: reducing quantum noise

- Increasing the laser power in the arms
 O1,O2 (100kW) → O3 (200kW) → goal is 400 kW for O4
- Not easy!
 - You need a high power laser first..
 - Mirror radii must remain within a few meters of the ~2 kilometer nominal value
 - Control issues: angular control and parametric instabilities
 - ``Point absorbers"
 <u>Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)</u>
- Complementary approach: squeezed states of vacuum

Replace regular vacuum with squeezed vacuum

♦ Reduce quantum noise by injecting squeezed vacuum: less uncertainty in one of the two quadratures
♦ Heisenberg uncertainty principle: if the noise gets smaller in one quadrature, it gets bigger in the other one
♦ One can choose the relative orientation between the squeezed vacuum and the interferometer signal (squeeze angle)

♦ Squeezing is made by creating pairs of photons using an optical parametric oscillator
♦ The pairs are quantum-mechanically entangled and have correlated arrival times at the detector
♦ This reduces the randomness of the time distribution

Squeezing performance in O3

PhysRevLett.123.231107 Nature 583, pages 43-47 (2020)

3 dB of squeezing observed at high frequency = 40% quantum noise reduction (in amplitude); observation of quantum radiation pressure noise in both detectors

Frequency **Dependent** Squeezing for O4

GW Signel ~30Hz Quantum Noise

High finesse detuned **"filter cavity"** which rotates the squeezing angle as function of frequency

Highlight from Virgo: 300 m filter cavity already built and locked and characterized, commissioning in progress 48