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Outline
● Strain data

○ Time domain
○ Frequency domain
○ Time-frequency representation

● Data quality
○ Noise artifacts
○ Tools to inspect data
○ O3 and O4

● References (important!)



What is strain data h(t)?
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GW strain h(t) is the relative 
difference between Lx and Ly arms

Very simplified! More detailed 
detector layout will be discussed in 
slide 19.



Raw time series data

● h(t) sampling rate for LIGO detectors: 16384 Hz
○ Open data: 16384 or 4096 Hz

● Looks really complicated!
○ We will with deal with that later…
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Frequency series data

1. Take time-series data (e.g. 512s)
2. Fourier-transform short 

segments of the time-series 
data (e.g. 4s)

3. Take the median Fourier 
transform
○ This is the median 

detector sensitivity
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Whitening the time series

● Transforming strain data to frequency domain allows to estimate the average detector 
sensitivity for each frequency bin
○ This sensitivity is called amplitude spectral density (ASD)

● Having ASD allows us to “whiten” the data
○ In other words, “scale the data”

● For example: detector is less sensitive at lower frequencies (<20 Hz), so the data at low 
frequencies should be “less important” than at medium frequencies (20-100 Hz)
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Divide by ASD
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Divide by ASD



Time-frequency representation: Q-transform 
● GW scientists often use time-frequency 

representation to inspect the data 
visually
○ Use Q-transform / Qscan / 

Qseries/ spectrogram/ omegascan, 
…

● Q-transform
○ Select Q-value
○ “Tile” the data for various Q 

values
○ Find the most optimal Q value
○ Make a Q-transform plot for this 

Q value
10
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Gravitational-wave noise
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● Gravitational-wave (GW) data is 
non-Gaussian and non-stationary 
○ It contains noise artifacts 

(“glitches”)
● Glitches can affect

○ GW detector sensitivity
○ GW searches
○ source parameter estimation, e.g. 

sky localisation
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Origin of glitches
● Origin of some glitches are known

○ Natural, e.g. thunderstorms
○ Human-made, e.g. trains or a 

fridge connected to the main 
power (aLOG: 23483)

● Some of glitches are recorded by 
witness channels
○ e.g. light scattering but not blips

● Knowing the origin of glitches allows 
to remove or mitigate them
○ Implemented RC tracking to 

reduce light scattering
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Data inspection tools
● We want to get rid of glitches but how?

○ Identify the noise
○ Look for potential correlations 

with the witness channels
○ Perform tests to simulate the 

noise
○ Fix the source of noise to reduce 

or eliminate it
○ If this cannot be done, try 

modelling the noise or create 
vetoes
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● Data inspection tools used by the LVK
○ Omicron
○ Q-transform
○ GravitySpy
○ Hveto
○ Detector status pages
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Gravity Spy[2]

● An image recognition algorithm based 
on convolutional neural networks

● Classifies transient noise at LIGO in 23 
classes

● The algorithm is trained on 
time-frequency spectrograms of noise 
transients

● Uses Omicron triggers as the input and 
the output is predicted glitch class
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https://doi.org/10.1088%2F1361-6382%2Faa5cea


Witness channels
● GW detectors have thousands of sensors that record various activity
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Hierarchical veto (Hveto)[3]

● Statistical correlations between 
noise in GW strain channel and 
witness channels

● Allows to find the potential noise 
culprits

● Does not work all the time!
○ Some noise sources are not 

recorded by any witness 
channels…

21[3] Smith et al. (2011)

https://doi.org/10.1088%2F0264-9381%2F28%2F23%2F235005


Noise modelling
● Quite often the root cause of noise 

cannot be found
● Instead, try to model the noise
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Vetoes
● If nothing else works, we create data 

quality vetoes
● Different veto categories depending on 

the severity of the issue
○ Category 1: Major issue with a key 

detector component
○ Category 2: Known noise coupling 

to h(t), e.g. high ground motion
○ Category 3: statistical noise 

coupling to h(t) that is not very 
well understood
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Daily detector status (link)
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Date 
selection

https://gwosc.org/detector_status/
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O3 summary
● Split between

○ O3a (Apr 1 2019 - Sept 30 2019)
■ Abbott et al. (2021)

○ O3b (Nov 1 2019 - Mar 27 2020)
■ LIGO, Virgo, KAGRA (2021)

● 74 GWs detected
○ 39 in O3a
○ 35 in O3b

● 18/74 (24%) of O3 GW candidates 
required glitch mitigation 
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https://doi.org/10.1103%2Fphysrevx.11.021053
https://arxiv.org/abs/2111.03606


Plans for O4 (link)
● Observing run 4 is scheduled to start on 

May 24, 2023
● Fractional increases in sensitivity result 

in many more detections!
○ (160/130) ≈ 1.2 🠆 1.8 more signals

● Changes in interferometers
○ Higher laser power
○ Low noise mitigation
○ New end test mass mirrors
○ Frequency-dependent squeezing
○ …

31

https://dcc.ligo.org/public/0094/P1200087/


Useful data quality references
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● LIGO Strain Data
○ A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave 

signals
○ Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole 

merger GW150914
○ The search for gravitational wave bursts in data from the second LIGO science run

● LIGO Data Quality
○ LIGO Data Quality in the Second and Third Observing Runs
○ Characterization of transient noise in Advanced LIGO relevant to gravitational wave 

signal GW150914
○ Sensitivity and performance of the Advanced LIGO detectors in the third observing 

run
○ Environmental noise in Advanced LIGO detectors
○ Frequency-Dependent Squeezing for Advanced LIGO
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Thank you!

Questions?
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