Gravitational Wave Searches for **Compact Binary Mergers** Koustav Chandra

16th May 2023

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

Observatories Gravitational & experiments Wave Timescales Frequency (Hz) Sources Cosmic sources

- One of General Relativity's bold predictions Gravitational Waves (GWs) ripples in spacetime lacksquare
- Any time-varying non-axisymmetric mass distribution can produce gravitational waves
- ullet
 - Compact Binary Coalescences (CBCs), Supernova Explosion, Rotating Neutron Stars, etc..
- Focus here: CBCs

THE SPECTRUM OF GRAVITATIONAL WAVES

Current ground-based detectors can observe high-frequency gravitational wave sources (~ 10 Hz to a few 1000Hz)

Compact Binary Mergers in LIGO/Virgo bandwidth

- Compact Binaries refers to binaries consisting of a pair compact objects Radius ∝ Mass
- Compact objects include white dwarfs, neutron stars, and black holes.
- LIGO/Virgo detectors observes binary neutron star [BNS], binary black hole [BBH] and neutron starblack hole [NSBH] mergers.

• Strain =
$$s = \frac{\Delta L}{L} \sim 10^{-21} \rightarrow \Delta L \sim 10^{-18} \mathrm{m}$$

 $[\operatorname{Given} L \sim \mathcal{O}(1 \text{ km})]$

 Check Viola's slides to know why observe compact binary mergers

[Link to video]

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

Fig: Gravitational waveform of a non-spinning black hole binary

Compact Binary Parameters

l

 χ_1

 m_1

In General Relativity, quasi-spherical black hole binaries are described by θ which consists of 15 parameters.

- Intrinsic:
 - Two component masses: m_1, m_2
 - Six spin Components: χ_1, χ_2

More parameters required if matter or new physics is included

P. Schmidt FSPAS (2020)

- Extrinsic:
 - Sky Location: (α, δ)
 - Luminosity distance: D_L (Or equivalently the redshift z)
 - Binary orientation parameters: (ι, φ)
 - Polarisation angle: ψ
 - Merger time: t_c

 $\hat{L} \rightarrow \text{orbital angular momentum direction}$ $\hat{N} \rightarrow$ Line of sight

Phenomenology of Black hole binaries

Detector Frame Total Mass = Redshifted source frame mass \rightarrow Gravitational waves are redshifted due to spacetime expansion

$$s(t \mid \boldsymbol{\theta}) \propto \left(M_T(1+z)\right)^{5/6} \sqrt{\frac{q}{1+q^2}}$$

$$\uparrow$$
Leading order

Heavier binary \rightarrow Larger amplitude

Effect of total mass

Phenomenology of Black hole binaries

Leading order

10

Effect of mass ratio

More Symmetric \rightarrow Larger amplitude

Phenomenology of Black hole binaries

Learn More

Effect of spins

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

Gravitational Wave Detector Data

frequency $f_s = 16 \text{kHz} \rightarrow N_{\text{samples}} = T \times f_s$ where T = data segment duration

Assuming linear detector response,

Goal: To find a template or model waveform $h\left(heta ^{\prime }
ight)$ $\sim s\left(heta
ight)$ such that $r=d-h(heta')\sim n$

GW interferometers record data as a discretely sampled time series $d = \left\{ d(t_1), ..., d(t_N) \right\}$ at sampling

- Contains contributions from myriad of noise sources
- $|n| \gg |s(\theta)| \rightarrow$ Needle in a haystack problem!

Refer to Victoria's and Ronaldas's talk for more details

Noise Model

- <u>Assumption</u>: Noise in each detector follows a zero-mean wide-sense stationary \bullet multivariate Gaussian distribution (Noise's DC component can always be subtracted out).
- **Wide-sense stationary**: Elements of noise correlation matrix

 $C\left(\left|t_{i}-t_{k}\right|\right) = \langle n(t_{i}) \ n(t_{k}) \rangle \rightarrow \text{depends on time-lag between samples.}$

- In Fourier domain, the noise correlation matrix is diagonal, $\left\langle \left| \tilde{n}(f_k) \right|^2 \right\rangle = \frac{T}{2} S_n(f_k), \ S_n(f) = \text{Noise power spectrum} \rightarrow \text{calculate using Welch}$ method.
- **Zero-mean multivariate Gaussian**:

$$\mathfrak{L}(d \mid \text{noise}, S_n) \propto \prod_i \exp\left[-\frac{2\left|\tilde{d}(f_i)\right|^2}{TS_n(f_i)}\right],$$

• Presence of a signal adjusts the mean value

Refer to Ronaldas's talk for more details

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

Matched Filtering

One way to find a GW signal is <u>matched filtering</u>.

Whitening normalises the power at all frequencies so that any excess power at any frequency becomes obvious.

Step-2: Whiten the template:
$$h \to \frac{\tilde{h}(f_i \mid \theta')}{\sqrt{S_n(f_i)}}$$

Adjust the template's amplitude at each frequency to account for the

$$\rho_{\text{opt}}^2 = (h \mid h) = 4\Re \sum_{f_i} \frac{\tilde{h}^*(f_i \mid \boldsymbol{\theta})\tilde{h}(f_i \mid \boldsymbol{\theta}')}{S_n(f_i)} \Delta f, \quad \Delta f = \text{frequency}$$

resolution

Step-4: Cross correlate the whitened data and whitened normalised template

 $\rho = \frac{(d \mid h)}{\sqrt{(h \mid h)}} \rightarrow \text{matched-filter SNR}$

Sathyaprakash + Dhurandhar, PRD 44, 3819 (1991)

- Introduction
- What does the signal look like?
- What does the data look like?
- How do we find the signal?
- Limitations and how to overcome them

Matched Filtering with unknown binary parameters

- We don't know the signal's merger time $t_c \rightarrow$ matched filter as a function of time and find the peak of $\rho(t)$.
- Matched filtering is very sensitive to signal's phase evolution + we don't know the binary parameters a priori \rightarrow numerically maximise $\rho(t)$ using a template bank \rightarrow Template with highest $\rho(t)$ is the best-matched template.
- Computationally infeasible to search for every possible binary parameter combination \rightarrow assume signal is adequately represented by quasi-circular (non-precessing) quadrupole $modes \rightarrow$ search using a template bank parameterised by (m_1, m_2) and $(\chi_1 \cdot \hat{L}, \chi_2 \cdot \hat{L})$.
- <u>Note:</u> Neighbouring templates in the bank are not *too* dissimilar.

Sathyaprakash + Dhurandhar, PRD 44, 3819 (1991)

- Matched filtering is optimal if detector data is Gaussian.
- Gravitational wave data can be modelled to be widesense stationary Gaussian process.
- GW data is plagued with intermittent non-Gaussian transients or glitches \rightarrow raises false alarms & reduce search performance
- <u>Solution</u>: Use a combination of vetoes, gating, coincidence tests and signal-noise discriminators to penalise/remove noisy glitches.
- The four templated searches namely PyCBC, GstLAL, <u>MBTA</u> and <u>SPIIR</u> implements slightly different methods to handle the non-ideal noise properties.

Headaches!

1080Lines

Koi_Fish

Repeating_Blips

1400Ripples

Light_Modulation

Scattered_Light

Air_Compressor

Low_Frequency_Burst

Scratchy

Blip

Low_Frequency_Lines

Tomte

vetoes \rightarrow Refer Ronaldas talk

<u>Usman et al. CQG 33 (2016) 21, 215004</u>

integrated Data Quality

- Use machine learning and data from auxiliary channels to predict the likelihood of a glitch being present in the strain data.
- Clean data → improves statistical significance

Essick et al. (arXiv:2005.12761)

Coincidence test

<u>Demand</u>: if the trigger is of astrophysical origin then:

- must be observed within physically allowed timedelays across the detector network.
- must share the same best-matched template

- test

<u>Step-1</u>: Divide the template into *p* frequency bands of equal expected power.

Allen PRD 71 (2005) 062001 <u>Usman et al. CQG 33 (2016) 21, 215004</u>

Step-2: Calculate
$$\chi_r^2 = \frac{p}{2p-2} \sum_{l=1}^p \left(\rho_l^2 - \frac{\rho^2}{p} \right)$$

- Trigger consistent with template $\chi^2_r \rightarrow 1$.
- Use χ^2_r -output to calculate $\rho = f(\rho, \chi^2_r) \rightarrow \text{amended } \rho$

Auto-correlation test

• Matched filtering doesn't produce just an SNR peak, but a time-series of SNR data.

• Compare the SNR time-series shape to the predicted shape for a template waveform. <u>Messick et al PRD 95, 042001 (2017)</u>

Statistical Significance

of background triggers with rank $R_b > R$ in time T_b

• Related to false alarm probability $p = 1 - e^{-T/FAR}$ <u>Was et al. CQG 27 (2010) 015005</u>

Non-templated searches as an alternative

Templated searches assumes that the putative signal is well-modelled by the template waveforms \rightarrow Need not be the case \rightarrow Search is less flexible

<u>Alternative-1</u>: use a non-templated search such as <u>coherent WaveBurst</u> or <u>oLIB</u>.

<u>Alternative-2</u>: use a search that models GW signals in a morphology-independent through a sum of sine-Gaussian waveforms (Morlet-Gabor wavelets). Eg: <u>BayesWave</u>

Klimenko et al. CQG 33 (2016) 21, 215004 Lynch et al. PRD 95, 104046 (2017) <u>Cornish et al. CQG 32 (2015) 13, 135012</u>

- Astrophysical transients emit short-lived gravitational waveforms.
- This waveforms create localised excess in energy in the timefrequency plane.
- Identifying such excess in energy coherently across the detector network is a strong indication of an event.

Summary

- GW signals from compact binary mergers are pretty well-modelled.
- Matched filter searches use these waveforms to find the signals.
- Matched filtering is extremely sensitive to signal's phase evolution and is optimal only when detector noise is Gaussian → not the case.
- Therefore templated searches use different techniques to account for non-Gaussianities .
- Use non-templated searches to catch the unexpected.
- Need to improve our analysis as detectors continue to improve.

24

