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1 Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) is a massive laser interfer-
ometer constructed specifically to detect gravitational waves. These distortions in spacetime
appear as changes in the relative lengths of the interferometer arms, which causes a phase
shift in the light reflected by the test masses. The detector signal indicates the current strain
on spacetime. Analysis of the strain over time allows extraction of signals from individual
events, and these events provide insight on astrophysical and relativistic phenomenae. Cur-
rent technological limitations constrain the observable emissions to those from inspiraling
compact binary objects. Other sources are predicted by models, but no detection has been
made yet.

Figure 1: Earthquake event and cor-
responding data loss

Besides gravitational radiation, terrestrial detectors
are subject to a range of other strains, all of which can
interfere with the correct operation of the detectors.
A significant part of this interference is ground mo-
tion; the 4-km interferometer arms are susceptible to
distortion caused by movements in the earth beneath
them. Even the strongest gravitational waves require
a detector sensitivity of approximately 1∗10−21/

√
Hz

to be evaluated with scientific significance.[1] One
common type of ground motion, called the ’secondary
microseism’, is over 10 orders of magnitude stronger
than the real signal at 10 Hz. [1] Earthquakes and
human-caused (or anthropogenic) noise also cause dis-
tortions or loss of the strain signal. Ground motion is
a significant contributor to noise and glitches in the
detector (see figure 1) with both active and passive
isolation utilized in the system to reduce its effects.
[1] However, this isolation cannot completely nullify

its effects, and so it is necessary to determine when the detector is being affected by this
interference in order to find noise sources, test new isolation methods, and avoid misinter-
pretation of such noise as a gravitational wave event.

Figure 2: Periodic elevation in noise
floor in the anthropogenic band dur-
ing daytime hours, followed by reduc-
tion during nighttime hours.

In order to prevent ground motion from propagating
to the interferometer system, LIGO includes multiple
seismic isolation devices. One of these is the Internal
Seismic Isolation (ISI) system built into each opti-
cal chamber. One part of the ISI is a seismometer
mounted on the ground outside the vacuum chamber
in order to provide feed-forward correction. [2] These
seismometers (one for each vacuum chamber) also al-
low the measurement of the respective ground motion
at each chamber. Data from these seismometers is
recorded and stored as time-series, and is available
through the LIGO Network Data Service.

We use traditional clustering methods to analyze this
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data in order to evaluate the seismic state of the de-
tector. Time-series data from multiple seismometers is acquired and divided into segments
of equal lengths. A feature extraction process is applied to these segments. Finally, the K-
means clustering algorithm is applied to the resulting features, and the clusters compared to
known seismic states and changes in glitch rates. This pipeline successfully identifies known
seismic states.

2 Objectives

Given environmental data from ISI ground motion sensors located at each vacuum enclosure,
we plan to determine the seismic state of the LIGO detector using clustering algorithms. The
specific objectives are summarized below.

• Objective 1: Dataset creation.

Time-series ground motion data will be acquired from sensors in multiple locations
at LIGO Livingston. Fixed-length segments of time will be extracted, and a feature
extraction process will transform each resulting timeseries into scalar features.

• Objective 2: Clustering and evaluation. While individual sensors can provide
clear information about seismic states in some situations, analysis of the entire corpus
of sensor data should improve the reliability of state determination. Given N time seg-
ments, K discrete clusters of time segments will be identified with K-means clustering,
each describing a unique seismic state.

• Objective 3: State identification. Manual labeling will permit correlation of clus-
ters with known detector states; this may allow discovery of new states, and provides
room for future exploration. The final goal for this project is the automatic labeling
of the detector’s ground-motion state as a veto provider and data quality metric.

3 Progress

A revised detection pipeline has been constructed and evaluated. This system refines and
extends the pipeline presented in the previous report. The fundamental structure is the
same, as illustrated in Figure 3. Ground motion timeseries data is split into segments and
run through a feature extraction process; the resulting dataset is clustered using the K-means
algorithm. The clusters are evaluated for stability, mathematical goodness, and correlation
with periods of increased glitch rate and known seismic states.

Ground motion timeseries data from ISI seismometers is split into segments and run through
a simplified tsfresh feature extraction, using a minimal parameter set consisting of 9 fea-
tures. The feature set previously in use, the standard comprehensive list extracted by ts-
fresh, contains over 700 feature-parameter combinations. The dimensionality reduction is
significant when moving to a minimal feature set; this increases the range of inter-point
distances, improving the ability of the k-means algorithm to distinguish between examples.
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Figure 3: Pipeline structure. Raw ground motion data is processed by segmentation and
feature extraction; K-means clustering of the resulting dataset groups time segments by
Euclidean distance. The clusters are then evaluated for intrinsic goodness, their correlation
with LIGO events of interest, and coherence with known seismic states.

The computational cost of feature extraction is significantly reduced by this smaller param-
eter set; while a comprehensive feature extraction on a 30-hour segment of data required 7
minutes of compute time, the minimal featureset could be extracted in 10 seconds.

The resulting features are clustered using a k-means [3] algorithm, as implemented in the
scikit library. [4] The K-means algorithm separates the time segments into k discrete clus-
ters, based on their Euclidean distance from certain centroids; these centroids are initially
selected randomly and are then refined as the algorithm proceeds.

The K-means algorithm has already shown promise in identifying seismic states. Bernhardt
et al [5] applied K-means to seismometer data, and then to microphones and accelerometers
in the physical environment monitoring (PEM) system. Bernhardt’s approach used raw
timeseries data, taking a 2-hour segment from each point in time, while we are applying
feature extraction and separating time segments altogether.

Figure 4: Normalized Mutual Information (NMI) score across 25 runs of single initialization
kmeans++. We see a mean of approximately 0.8; this means that around 80% of clusters
are identical between runs.

Depending on the clustering parameters, and especially the initial cluster centroids, running
the same process on the same data multiple times can yield drastically different results.
To address this problem, the parameters of the k-means++ initialization were adjusted to
take multiple trials of centroid locations and choose the best. The initial randomness, when
combined with sufficient sample size, creates greater determinism in the final result. In order
to evaluate the similarity between various results, a few algorithms can be applied. In this
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Figure 5: NMI score across 25 runs of 10-initialization kmeans++. All scores are above 0.8,
with some as high as 0.98; similarity between multiple clustering runs is thus very high.

work we have utilized normalized mutual information (NMI), adjusted rand index (ARI), and
Fowlkes-Mallows score; any one of the three metrics is sufficient to establish the difference
in stability between different clustering parameters. In Figures 4 and 5, we compare NMI
scores for a varying number of kmeans++ initialization trials. Allowing kmeans++ to use
more initialization attempts clearly increases the stability of the results.

DBSCAN was explored for the previous report. As noted previously, results were not infor-
mative; we theorize that this dataset is not well suited for the density-type algorithm, as
k-means was able to cluster the data effectively.

Figure 6: Cluster evaluation metrics for 30 hour dataset split into 240-second segments.
Each metric addresses a different statistical characteristic of the clusters; however, they all
agree that clustering is much ’worse’ for k values of 5 or higher.

Intrinsic cluster evaluation metrics have been applied to our clustering results. The Davies-
Bouldin, silhouette, and Calinski-Harabasz algorithms have been tested. These metrics
evaluate the properties of the clusters, not their correlation to ’truth’. This is helpful for
comparing ’successful’ clusterings when the clusters are already clearly correlated to points of
interest. However, when that correlation is weaker, the metrics fail to provide much insight.
Figure 6 shows an example of these intrinsic scores. These three metrics point to k values
of 4 or lower.
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4 Algorithm

Intrinsic cluster metrics are helpful as a purely mathematical evaluation of cluster charac-
teristics. However, cluster goodness and cluster usefulness are not intrinsically connected;
well-separated clusters do not necessarily provide insight into a glitch in LIGO. So we have
designed and implemented a metric, the Glitch Correlation Metric, whereby LIGO glitches
can be correlated with clustering results; this allows objective analysis of such results. The
GCM is formulated as follows:

A timeseries T is composed of segments Ti of constant length l, each of which corresponds
to a segment Gi of timeseries G. Each segment Gi contains a count gi of glitches in that
time period.

A clustering algorithm is applied to T with cluster count parameter K. This creates K
discrete clusters Cj, each of which contains a set Sj of segments of T , corresponding to
segments of G.

Glitch count Gj for each cluster is defined as
∑

gi for all i in Sj.

The mean glitch rate Rj for each cluster is then
Gj

count(Sj)∗l

The mean glitch rate RT for timeseries T is similarly
∑

gi
count(Ti)∗l

Now each cluster Cj is placed in a bin determined by comparison between glitch rates Rj

and RT .∑
below =

∑Rj>RT Gj∑
above =

∑Rj<RT Gj

And the final score M =
∑

above∑
above +

∑
below

This metric evaluates how well the clustering has captured periods of time with higher glitch
rates; these time periods are important because one goal of the project, as stated above, is
to identify exactly these periods. The score asymptotically ranges from 0 to 1, with higher
results indicating a more effective capturing of high glitch rate periods with clusters. We
consider every resulting cluster in this calculation, avoiding selection bias in comparisons.

A broad gridsearch has been completed with this metric in which has been used to objectively
evaluate clusterings before moving to individual analysis. In Figure 7, we see two clustering
with similar parameters but very different GCM results; this disparity was first identified
with the illustration of GCM found in Figure 8.

Besides this mathematical work, some effort has been put into visualization of clustering
results. The original approach, using another graph on a twinned Y axis, was simple to
implement but not very instructive. The gwpy library supports binary flags (as seen in Figure
1), but this is only useful for a result with two clusters. To visualize three or more clusters,
a new approach is necessary. Coloring of the seismic timeseries was visually informative
but slow to run. So a simple linear bar graph has been implemented. This is accompanied
by an illustration of the concurrent glitch rate and as many seismic channels as desired.
Additionally, a flag for locklosses has been added, as glitches are not recorded during these
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times.

Figure 7: Clustering with 120 second segments; visualization of clusters, glitch rate, and
lockloss status in the first graph, with six seismic channels of interest below. Minimal
feature extraction. Here we are contrasting two clustering results, with k=4 and k=5. The
additional cluster allows the isolation of more interesting seismic activity, and changes the
GCM from 0.6 to 0.8.

5 Challenges and Future Work

Points of interest in LIGO strain data and the corresponding auxiliary channels include
known noise events, false GW events, and other unexpected behaviors. Analysis of ground
motion data from those times should provide some insight into the factors that negatively
affect the detector. Comparing glitch rates to seismic channels has already proven useful, as
we have shown with our novel metric.
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Figure 8: Heatmap of new metric – higher is better. Note the ’sweet spot’ between k=6 and
k=12, with slight variations based on segment length; additionally, the significant changes
as k surpasses 4. These points of interest have given significant insight into clustering
characteristics.

One extension of this project would be the use of clustering results as a predictive tool. If
a unique state tends to precede locklosses, this could be a trigger for something akin to the
current ”earthquake mode” used by LIGO sites, which adjusts seismic isolation settings to
handle increased ground motion while maintaining lock. Controllers and actuators could be
adjusted to address the specific seismic motion that is linked to locklosses.

References

[1] Rana X. Adhikari. Gravitational radiation detection with laser interferometry. Reviews
of Modern Physics, 86(1):121–151, feb 2014.

[2] LIGO Scientific Collaboration (August 2014 LSC author list). Advanced LIGO. Classical
and Quantum Gravity, 32(7):074001, mar 2015.

[3] J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley
Symp. Math. Statist. Probability, pages 281–297. University of California Los Angeles LA
USA, 1967.

[4] scikit-learn. https://scikit-learn.org/stable/. Accessed: 2023-05-17.

[5] Jacob Bernhardt. Data clustering techniques for the correlation of environmental noise
to signals in ligo detectors. 2019.

page 7

https://scikit-learn.org/stable/

	Introduction
	Objectives
	Progress
	Algorithm
	Challenges and Future Work

