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A. Abstract

Transient, non-Gaussian noise artifacts, or detector
“glitches” challenge gravitational-wave parameter infer-
ence. When left unmitigated, or mitigated incorrectly,
glitches lead to bias in parameter estimation since un-
derlying noise assumptions do not match the collected
data. The current method for mitigating glitches in
gravitational-wave detectors is to fit the glitch as well
as a compact binary in the detector, subtract a point
realization of that glitch model, and pass the residuals
on for downstream analysis. This process leaves much to
be desired as the uncertainty in the glitch model is not
propagated into later analyses. A solution could be to fit
for both a glitch and a compact-binary in the data while
doing parameter estimation but there are two main prob-
lems. Firstly, a more computationally expensive model
is more costly to simulate and a larger parameter space
is more difficult to sample. Secondly, there is no existing
analysis that can account for both glitches and the full
nuances of current gravitational waveforms, notably pre-
cession. Here we explore a method that combines outputs
of various LIGO data analysis schemes via reweighting.
We find that such methods were ineffective at construct-
ing accurate compact binary parameter estimation while
accounting for the uncertainty introduced by the glitch
model.

I. INTRODUCTION

Gravitational waves are ripples in space-time caused
by the acceleration of high mass objects. They were first
observed by LIGO (Laser Interferometer Gravitational-
wave Observatory) in 2015 [1]. LIGO utilizes highly pre-
cise instrumentation to detect the differences in length
of its perpendicular, 4 kilometer “arms” when a grav-
itational wave passes through. LIGO is able to detect
the inspiral and merger of orbiting black holes and neu-
tron stars. The resulting waveform is dependent on the
physics of the system, like mass and angular momentum.
After accounting for the noise in the detectors, the wave-
form can be matched to a model and the parameters of
the system that produced the signal can be estimated.

In addition to gravitational waveforms, also present
in the data are transient noise artifacts, or “glitches”.
These such glitches differ from typical detector noise in
that they are non-Gaussian. Glitches vary in sources,
frequency, time, duration and strength. The presence of
this non-Gaussian noise changes the noise background.
When most analyses assume that a signal is present in
only Gaussian noise, their presence can bias the estima-

tion.
BayesWave is a Bayesian algorithm that can produce a

posterior distribution accounting for various glitch mod-
els, but it cannot construct a CBC (compact binary coa-
lescence) waveform model that includes precession. Bilby
is another Bayesian algorithm that can construct CBC
models which include precession parameters, but cannot
account for glitches. Our objective was to reweight a set
of posterior samples from a BayesWave CBC+Glitch run
and obtain a posterior distribution with both the glitch
model and a fully precessing waveform. We obtained
this posterior distribution by constructing an approxi-
mate distribution using two distinct methods, both of
which relied upon multiplying parameter spaces together
to create the approximate distribution. After construct-
ing the approximate we applied weights to samples to es-
timate the target distribution. The first method was by
simulating glitch parameters, using the Bilby precessing
CBC waveform and attaching samples from BayesWave
glitch models. We revised this method to take draws from
specific BayesWave glitch models instead of from all of
them. The alternate method was simulating precession
parameters, where we began with a BayesWave CBC and
glitch subtracted run and attached random samples from
the Bilby spin precession priors.
This study focuses on the parameters describing spin

precession of binary systems. The parameters χeff and χp

measure the amount of spin angular momentum aligned
and perpendicular to the orbital angular momentum re-
spectively. Higher precession means the axes are more
misaligned. In precessing binaries, the orbital plane shifts
and therefore LIGO’s viewing angle changes as well. This
manifests as a cyclical increase and decrease of the ampli-
tude of the waveform. Effective detection of spin preces-
sion requires a waveform model unimpeded by glitches.
As concluded in [2],

any evidence for spin-precession in
GW200129 depends sensitively on the
glitch model and priors employed.

An unambiguous measurement of spin precession is im-
portant because it can provide hints to how the binary
was formed. High mass binaries either form together
as stars and remain in orbit with each other through-
out their lives, or through dynamical capture where they
form independently and later fall into orbit with each
other. When binaries are born from the same stellar
nursery, the stars evolve together and their angular mo-
mentum axes are aligned. This is not always the case for
binaries formed through dynamical capture because the
stars form independently. Their axes are aligned with
their local stellar nursery. When dynamical capture oc-
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curs when they fall into highly eccentric and precessing
orbits. By accurately identifying spin precession in sig-
nals, we can begin to ascertain what part of the high
mass binary population was formed through dynamical
capture.

BayesWave is a Bayesian algorithm that can produce a
posterior distribution accounting for various glitch mod-
els, but it cannot construct a CBC (compact binary co-
alescence) waveform model that includes precession. It
uses the waveform model ’IMRPhenomD’. Bilby is an-
other Bayeseian algorithm that can construct CBC mod-
els which include precession parameters, but cannot ac-
count for glitches. It uses an ’NSur’ waveform model.

Our objective is to create a posterior that accounts
for both the CBC in the waveform as well as the glitch.
To do so we reweight a set of posterior samples from
a BayesWave run for a compact binary coalescence sig-
nal impacted by a glitch (for short a CBC+Glitch run).
Then obtain a posterior distribution with both the glitch
model and a fully precessing waveform. In other words,
a more complete CBC (including precession) and glitch
parameter space.

II. GW200129

The research that preceded and inspired this project,
[2], reexamined evidence for spin precession of a the
black hole binary [3], GW200129. The Livingston detec-
tor experienced a glitch that overlapped with the time-
frequency path of the CBC. Parameter estimation of the
LIGO Hanford data shows a lack of evidence for spin
precession. The paper concludes

that the difference between a spin-precessing
and a non-precessing interpretation for
GW200129 is smaller than the statistical
and systematic uncertainty of the glitch sub-
traction, finding that the support for spin-
precession depends sensitively on the glitch
modeling.

III. ANALYSIS PIPELINES

A. bayeswave

BayesWave constructs a glitch model using sine-
Gaussian wavelets. This noise model has variable dimen-
sion and is parameterized. It is meant to account for non-
Gaussian data. The amount and location of wavelets are
determined by a Markov Chain Monte Carlo algorithm
[4]. The algorithm analyzes the data for excess power
that does not fit the clusters of power expected from grav-
itational wave signals in a time-frequency representation.
We utilize BayesWave for parameter estimation, specif-
ically to produce a posterior distribution that accounts
for different possible glitches. BayesWave is limited by

FIG. 1. Signal data of event GW200129 across the three de-
tectors, glitch in Livingston detector circled in pink

its inability to include spin precession parameters as it
creates the waveform.

B. bilby

Bilby is a Bayesian inference library used to perform
parameter estimation. It is designed for interferomet-
ric data recorded from CBC events. The CBC models
that bilby constructs include spin precession parameters.
However, bilby is meant for signal data without the pres-
ence of glitches. It cannot detect and account for them
like BayesWave.

IV. BAYES’ THEOREM

Bayes’ Theorem is made up of the likelihood term (L),
the prior term (π) and the evidence term (Z). The like-
lihood evaluates how well the model fits the signal, or
the probability of the data given the waveform. The
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FIG. 2. The bottom left graph shows the different glitch
models used for the glitch mitigation, the histogram shows
probability distributions for the precession parameter [2]

prior term is a probability distribution that uses prior
knowledge to include how likely we believe each parame-
ter value is. The evidence term is a normalization factor.

Bayesian algorithms utilize Bayes’ Theorem in order
to produce a posterior, a probability distribution condi-
tioned on both the prior knowledge as well as its real-
ization in data. Here we write the posterior that we are
interested, the posterior including both precessing CBC
parameters θp with precessing waveform model W↗ as
well as glitch parameters g described by glitch model G.

p(θp, g|d,W↗, G) =
L(d|θp, g,G,W↗)π(θp, g|G,W↗)

Z(d|W↗, G)
(1)

V. SAMPLING AND REWEIGHTING

The output of bayesian samplers are posteriors, or sets
of parameters distributed according to some posterior
distribution. If we have a probability distribution we
want to sample (a target distribution) that is similar to
another distribution that we have already sampled (an
approximate distribution), then instead of sampling the
target distribution directly, we can instead “reweight”
the approximate distributions.

Before obtaining a posterior on a complete CBC and
glitch parameter space, we needed to know how to add
additional parameters to create a higher dimensional
probability distribution. This can be achieved by cre-
ating a probability distribution with the parameter we
want to attach, Φ(ϕ), and multiplying it by the original
distribution that lacks the parameter, p(θ)

P(θ, ϕ) = p(θ)Φ(ϕ) (2)

When starting from one probability distribution of pos-
teriors the process of reweighting requires dividing the
target probability density by the approximate probability
density to obtain “weights”. This process can be applied

to acquire weights for the probability distributions, likeli-
hoods and priors. Weights are useful because multiplying
the original probability density by the weights results in
a new probability density that can be used to estimate
the target distribution. For example, using p the “ap-
proximate” distribution and p̃ the “target” distribution.
We can write:

p̃(θ) =
p(θ)

p(θ)
p̃(θ)

=
p̃(θ)

p(θ)
p(θ)

= w(θ)p(θ) (3)

where we have defined.

w(θ) =
p̃(θ)

p(θ)
(4)

These are our “weights”. Essentially, what we have done
is applied a weight to each location in parameter space.
Now, we can draw from samples {θi}, but weighing each
sample by the corresponding w(θi). Now we have a set,

{θ̃i} that is statistically distributed by p̃. This is how
reweighting works.
After reweighting we have samples distributed accord-

ing to a target distribution. To quantify how well these
samples describe that distribution we use “effective num-
ber of samples”, neff and efficiency, ε using

neff ≈ [Σw]2

Σ[w2]
(5)

ε =
neff

Ns
(6)

where Ns is the number of samples originally from the
aprroximate distribution. Calculating neff is important
for quantifying sampling errors. If we were to esti-
mate the integral of the target distribution using the
reweighted samples, the effective number of samples rep-
resents how many samples from the target distribution
would yield the same level of accuracy. The efficiency is
simply a rescaling of the effective number of samples to
gain a percent value.

VI. SIMULATING GLITCH PARAMETERS

The first method we tried for constructing our approxi-
mate distribution P(θp, g) was utilizing the Bilby precess-
ing CBC waveform p (θp|d, gA,W↗) and attaching sam-
ples from the BayesWave glitch space G(g) to draws from
the bilby posterior.

P(θp, g) = p (θp|d, gA,W↗)G(g) (7)

Now for each {θip, gi} sample, both the likelihood
L(θp, g|d,W↗, G) and the prior π(θp, g|W↗, G) are cal-
culable.
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We can rewrite Eq (1) almost in terms of entirely
known quantities,

p(θp, g|d,G,W↗)

= wL(θp, g)wπ(θp, g)P(θp, g)
Z(d|W↗, gA)

Z(d|W↗, G)
(8)

wL being the likelihood weight and wπ being the prior
weight.

wL(θp, g) =
L(d|θp, g,W↗, G)

L(d|θp, gA,W↗)
(9)

wπ(θp, g) =
π(θp, g|W↗, G)

π(θp|W↗, gA)G(g)
. (10)

Finally, using the property

x ∼ p(x) →
∫

f(x)p(x)dx ≈ 1

N
ΣN

i f(xi) (11)

where ∼ means distributed by and p(x) is a normalized
probability distribution, and xi are discrete samples of
N total samples. We can estimate the evidence term

Z(d|W↗, G) ≈ Z(d|gA,W↗)

N
ΣN

i wL(θ
i
p, g

i)wπ(θ
i
p, g

i)

= Z(d|gA,W↗)w̄, (12)

where {i} is indexed over our samples drawn from P and
w̄ is the average weight over all samples.

FIG. 3. Bilby precessing waveform in blue lies on top of the
signal data in gray and various possible glitch models in ‘gold-
enrod’ that coincide with the time of the glitch in the L1 de-
tector

Efficiency for this method was < 1%. The reweighted
distributions in Fig. 4 have no continuous shape, in-
dicative of the low efficiency. We decided to revise this
method. Previously, to construct our approximate dis-
tribution we drew a unique glitch sample for each CBC
parameter sample.

VII. SINGLE GLITCH REALIZATION
REWEIGHTING

Instead, we used a single glitch realization across all
CBC parameter samples in hopes that this method would

FIG. 4. Corner plot, Chi-p (precession parameter) vs. Mass
ratio

FIG. 5. Bilby precessing waveform in blue lies on top of the
signal data in gray with two example glitch models in orange
and green

increase efficiency. We attached these draws to samples
from the bilby precessing waveform as we had before.
Two example glitch models are shown on Fig. 7. The

orange glitch model Fig. 6 contained fewer wavelets but a
longer glitch duration thank the green glitch model Fig.
7. It yielded an efficiency of 5.6% which was a small
improvement from before. The reweighted probability
distributions are continuous but not very distinct from
the approximate distributions. The green glitch model
Fig. 7 contained many wavelets with a shorter duration.
It yielded an unusually high efficiency of 99.99%. The
reweighted distribution is identical to the approximate,
which implies the glitch model had no effect on the pa-
rameter estimation. This lends credence to the conclu-
sions of Payne et al about the posteriors being sensitive
to choice of glitch model.

VIII. SIMULATING PRECESSION
PARAMETERS

The alternate method for constructing an approximate
distribution was starting with a BayesWaveCBC+Glitch
run posterior p(θ, g|d,W↑) and drawing random samples
from the spin parameters priors π(θ+). With W↑ being
the BayesWave run waveform model, θ representing the
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FIG. 6. Corner plot, Chi-p (precession parameter) vs. Mass
ratio

FIG. 7. Corner plot, Chi-p (precession parameter) vs. Mass
ratio

non-spinning parameters and θ= being the spin preces-
sion parameters we begin with.

p(θ, g|d,W↑)π(θ+) =
L(d|θ, g,W↑)π(θ, g)π(θ+)

Z(d|W↑)
⇒ (13)

p(θ, g, θ+|d,W↑) =
L(d|θ, θ+, g,W↑)π(θ, g, θ+)

Z(d|W↑)
. (14)

and want to end up with

p(θp, g|d,W↗) =
L(d|θp, g,W↗)π(θp, g)

Z(d|W↗)
, (15)

Equation (15) then becomes

p(θp, g|d,W↗) =
L(d|θp, g,W↗)π(θp, g)

Z(d|W↗)

=
L(d|θ, θ+, g,W↑)

L(d|θ, θ+, g,W↑)

L(d|θp, g,W↗)π(θp, g)

Z(d|W↗)
,

=
L(d|θp, g,W↗)

L(d|θ, θ+, g,W↑)

L(d|θ, θ+, g,W↑)π(θp, g)

Z(d|W↗)
,

(16)

Simplifying L(d|θ, θ+, g,W↑) = L(d|θ, g,W↑) we end up
with

p(θp, g|d,W↗) =
L(d|θp, g,W↗)

L(d|θ, g,W↑)

L(d|θ, g,W↑)π(θp, g)

Z(d|W↗)
.

(17)

Starting with the samples from the BayesWave pos-
terior that have been augmented with precession pa-
rameters drawn from the prior p(θ, g, θ+|d,W↑) ∼
L(d|θ, g,W↑)π(θp, g) we re-weight them with weights

wL =
L(d|θp, g,W↗)

L(d|θ, g,W↑)
. (18)

FIG. 8. BayesWaveCBC+Glitch waveform in in pink, differ-
ent precessing waveforms in blue, signal data in gray

Most of the precessing waveforms do not match well
in frequency against the BayesWaveCBC+Glitch wave-
form , Fig. 8, or the signal data. The efficiency from
this method was < 1%. The approximate distributions
were much smaller than those constructed in the previous
method. The reweighted probability distributions do not
share this trait, they feature tall spikes at very specific
values Fig. 9.

IX. CONCLUSION

Our goal was to create a posterior that accounts for
both the CBC in the waveform as well as the glitch. We
attempted three different methods: simulating glitch pa-
rameters, reweighting with single glitch realization, sim-
ulating precession parameters.
For the simulating glitch parameters method we calcu-

lated a very low efficiency while marginalizing over many
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FIG. 9. Corner plot, Chi-p (precession parameter) vs. Mass
ratio

different glitch models. We attribute this low efficiency to
an ineffective BayesWave run. BayesWave could not con-
fidently identify the characteristics of the glitch within
the Livingston detector, and therefore the glitch mod-

els provided were not accurate to the actual glitch in
the data. Alternately for the revised method of drawing
samples from single glitch realizations, we encountered
unusually high efficiencies. After examining the signal
and the glitch model on the frequency domain we con-
clude that most glitch models from the BayesWave run
do not intersect with the signal and therefore have no im-
pact on the probability distributions. These issues could
be resolved with a more confident BayesWave run where
the glitch can be more accurately identified, or working
with simulated data in order to test the effectiveness of
the method. Another potential method is drawing from
the glitch prior as we drew from the precession prior, in-
stead of from specific glitch models. Our method of sim-
ulating precession parameters yielded low efficiency and
waveform models that did not fit the data well. We the-
orize the problem with this method lies in the difference
of waveform models employed by BayesWave and Bilby.
BayesWave utilizes the waveform model ’IMRPhenomD’
while Bilby uses an ’NRSur’ waveform. Parameter spaces
from the two distinct waveform models do not translate
well between each other, which impacted the effectiveness
of the method.
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