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I. INTRODUCTION/BACKGROUND

Gravitational waves are ripples in space-time caused by
the acceleration of high mass objects. General relativity
predicts their existence and they were first observed by
LIGO (Laser Interferometer Gravitational-wave Obser-
vatory) in 2015. LIGO utilizes highly precise instrumen-
tation to detect the differences in length of its perpen-
dicular, 4 kilometer “arms” when a gravitational wave
passes through. LIGO is able to detect the inspiral and
merger of orbiting black holes and neutron stars. The re-
sulting waveform is dependant on the parameters of the
system. After accounting for the noise in the detectors
the waveform can be matched to a model and parameters
can be found.

However, glitches in the data can occur which vary in
sources, frequency, time, duration and strength. These
glitches can interfere with how we account for noise be-
fore parameter estimation and lead to biased parameters.
To account for glitches we can cut them out or subtract
them from the data using the program BayesWave, but
BayesWave cannot construct a waveform model for CBC
(compact binary coalescence) that includes precession.
As concluded in my mentors’ paper on GW200129 [1]
”any evidence for spin-precession in GW200129 depends
sensitively on the glitch model and priors employed”.

II. OBJECTIVE

My objective is to reweight a set of posterior samples
from a BayesWave CBC+Glitch run and obtain a poste-
rior distribution with both the glitch model and a fully
precessing waveform.1 In other words, a complete CBC
(including precession) and glitch parameter space.

Reweighting is the process of starting with one proba-
bility distribution of posteriors and calculating new likeli-
hoods on the same samples. Then computing the ratio of
likelihoods between both, which become the new weights
for the posteriors.

III. METHOD

The first step is understanding the process of reweight-
ing probability distributions in the same parameter space
in order to change an ”approximate” distribution to a

1 the same, or a similar procedure could be used to include some-
thing like an eccentric parameter or even higher order modes

”target” distribution. Then doing the same for a tar-
get on a different parameter space by constructing a new
approximate distribution that includes both parameter
spaces. This can be done by multiplying both probabil-
ity distributions together.
Starting with a set of posterior samples from a

BayesWave CBC+Glitch run

p(θ, g|d,W↑, G) =
L(d|θ, g,G,W↑)π(θ, g|G,W↑)

Z(d|W↑, G)
(1)

where θ are our (non-precessing) CBC parameters, g
are our glitch parameters, d is our data, W↑ is a non-
precessing waveform model, and G is our glitch model
(sine-Gaussian wavelets). We want to end up with a pos-
terior distribution that includes the glitch model as well
as a fully precessing waveform.

p(θp, g|d,W↗, G) =
L(d|θp, g,G,W↗)π(θp, g|G,W↗)

Z(d|W↗, G)
(2)

where W↗ is a precessing waveform model, L is our like-
lihood function and π is our prior. We include G and
W↗ in our priors to differentiate between models with
and without precession and/or glitches since priors are
not compelled to be the same between models.
To get here we first we draw the glitch model, gA,

evenly from our glitch samples while ignoring CBC sam-
ples. Then we subtract gA from the original data and
run the inference library, Bilby, including precession pa-
rameters which gives us the posterior

p (θp|d, gA,W↗) =
L(d|θp, gA,W↗)π(θp|gA,W↗)

Z(d|W↗, gA)
, (3)

Now we have θp ∼ p (θp|d, gA,W↗), that is, the CBC pre-
cession parameter posterior posterior over a single glitch
realization (essentially, Fig. 11 in [1]). However we want
this posterior over a full g parameter space.

A. Approach: Simulate Glitch Parameters

We will use Eq (3) as an approximate distribution.
First we need to increase its dimensions to include the
glitch parameter space, which creates a new approximate
distribution.

P(θp, g) = p (θp|d, gA,W↗)G(g) (4)

Then we can rewrite Eq (2) almost in terms of entirely



2

known quantities.

p(θp, g|d,G,W↗)

= wL(θp, g)wπ(θp, g)P(θp, g)
Z(d|W↗, gA)

Z(d|W↗, G)
(5)

Finally, using the property

x ∼ p(x) →
∫

f(x)p(x)dx ≈ 1

N
ΣN

i f(xi) (6)

where ∼ means distributed by and p(x) is a normalized

probability distribution, and xi are discrete samples of
N total samples. We can estimate the evidence term

Z(d|W↗, G) ≈ Z(d|gA,W↗)

N
ΣN

i wL(θ
i
p, g

i)wπ(θ
i
p, g

i)

= Z(d|gA,W↗)w̄, (7)

where {i} is indexed over our samples drawn from P and
w̄ is the average weight over all samples.
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