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Determining whether a gravitational wave (GW) signal is of astrophysical origin or is caused
by terrestrial noise still presents a challenge to the GW community. Current searches estimate
the significance of events by calculating the false alarm rate (FAR) and pastro, but these results
are limited to a single search pipeline. In this work, we investigate three different methods of
combining information from multiple GW searches and calculating a joint pastro, including the
application of the Bonferroni correction to individual FARs, finding a harmonic mean FAR, and
using maximum individual pastro as a measure of event significance. Using these approaches, we
compare the effectiveness of different combinations of searches using the language of information
theory and show that purity of current Gravitational-wave Transient Catalogs (GWTCs) is likely
overestimated.

I. INTRODUCTION

Since the first detection of gravitational waves
(GWs) [1], the total number of GW candidates reported
by LIGO-Virgo-KAGRA (LVK) Collaboration reached
90 [2] and continues to grow 1. At the same time, deter-
mining whether a certain signal has astrophysical origin
or is caused by terrestrial noise still remains a challenge,
which leads to the uncertainty in the number of detected
compact mergers [3].

Noisy local environments that are difficult to model,
observations with multiple detectors, and inability to
shield the instruments from GW signals result in the de-
pendence of the estimated event significance on a search
analysis [4]. Two main approaches that are used to search
for events include matching signals to the compact binary
coalescence waveform templates and searching for tran-
sient signals across the network of detectors with minimal
modeling. Variations of the first method are used in Py-
CBC [5], GstLAL [6], MBTA [7], IAS [8], and OGC [9]
pipelines, and the second method is used in the cWB
pipeline [2]. There are several technical differences be-
tween search pipelines, so they result in different estima-
tions of event significance, which often leads to contra-
dictory conclusions for the same detector data. However,
all pipelines are designed to search for the same signals,
so their results are not fully independent and should cor-
relate [10].

In order to estimate significance of an GW candidate,
Gravitational-wave Transient Catalogs, e.g., GWTC-
3 [2], report three quantities, namely signal-to-noise ratio

1 https://observing.docs.ligo.org/plan

(SNR), false alarm rate (FAR), and pastro, for each search
pipeline that detected the event. False alarm rate, usu-
ally measured in yr−1, is a rate of coincidence triggers
that occur due to noise alone and have SNR equal or
higher than a certain value. As a result, to confirm the
presence of a signal, one must show that the probabil-
ity to obtain the observed event in a dataset that only
contains noise is smaller than a given threshold [4].

On the other hand, pastro is defined as a probability
that a GW candidate has astrophysical origin and is not
caused by terrestrial noise. It is calculated by combining
the rates at which triggers – outputs of a search pipeline
– are generated by both astrophysical and noise sources,
i.e., both false and true alarm rates [11].

From the statistical point of view, the problem of
analysing results from multiple search pipelines is a
multiple-comparison procedure (MPS). In this frame-
work, controlling errors in pastro values and false alarm
rates in presence of multiple searches is controlling the
family-wise error rates and false discovery rates. Statis-
tical and medical research shows that unguarded use of
single-inference results and failure to apply appropriate
corrections when pursuing multiple inferences greatly in-
creases false positive rate and jeopardizes sensitivity to
detect true signals [12, 13]. Currently, GWTC catalogs,
use the maximum of single-pipeline pastro and FAR val-
ues as a measure of event significance, which is an exam-
ple of such an unguarded approach. As a result, we are
interested in evaluating the effectiveness of this method
in comparison with other statistical solutions to the MPS
problem in the context of GW search pipelines.

For the purpose of this work, we analyze the search
results only in terms of the FAR and pastro distributions
they produce. Consequently, we do not take into account
the differences in FAR calculation and methods for esti-
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mating noise properties across the network of pipelines.
This data analysis approach can be considered to be an
application of information theory with the number of
events passing FAR and pastro thresholds as a macro-
scopic parameter.

II. METHODS

The goal of this project is to investigate different
ways of combining information from multiple GW search
pipelines and analyze what new knowledge these combi-
nations provide about observed compact mergers. In ad-
dition, we are interested in analysing the contributions
of the IAS and OGC pipelines, developed outside of the
LVK collaboration, to the results of the internal pipelines.

In order to do this, we introduce three different meth-
ods of calculating a combined measure of significance of
GW events for any number of pipelines using only their
FAR distributions:

• Trials: Find the combined FAR by applying the
Bonferroni correction (trials factor) [14] to FARs
from individual pipelines corresponding to the same
trigger.

FAR1...N =
1

N
min (FAR1, FAR2, ... , FARN ) (1)

• Harmonic: Find the combined FAR by calculating
a harmonic mean of individual FARs [13].

1

FAR1...N
=

1

N

(
1

FAR1
+

1

FAR2
+ ...+

1

FARN

)
(2)

• Max: Calculate pastro values for individual
pipelines from their FAR distributions. Assign the
highest pastro calculated for a certain trigger to
be the combined pastro. This method is used in
GWTC-3 catalog [2].

p1...Nastro = max
(
p1astro, p

2
astro, ... , pNastro

)
(3)

The first two methods result in new FAR distributions
that incorporate information from all pipelines and can
be the basis for calculating a combined pastro. On the
other hand, the third method uses original FAR distri-
butions to calculate separate pastro values, which then
need to be combined. Since search pipelines are designed
to look for the same modeled waveforms, we expected
their results to be correlated. According to statistical
studies, in case of dependent tests the Harmonic method
is expected to have a statistical advantage and reduce the
rate of false positive detections [13].

After calculating combined FARs from the Trials and
Harmonic methods, we analyse how many events from
the first part of the third observing run (O3a) and the
LVK injection set of simulated events pass combined FAR
thresholds. In order to do this we use the following data:

• LVK data: The set of FARs of all triggers that
were detected by at least one pipeline among Py-
CBC (highmass and all-sky treated as two separate
pipelines), GstLAL, or MBTA during the O3a ob-
sering run [15], accesed via 2.

• IAS data: The set of FARs of events detected by
the IAS [16] pipeline, data accessed via 3.

• OGC data: The set of FARs of events detected
by the OGC [9] pipeline, data accessed via 4.

• Injection data: The set of FARs for the O3a in-
jection set that includes five LVK searches, namely
PyCBC (BBH and hyperbank treated as two sep-
arate pipelines), GstLAL, MBTA, and CWB that
contains 512431 injections. Accessed via 5.

Next, we use combined FAR distributions for Trials
and Harmonic methods and original FAR distributions
for Max method to calculate pastro values using the
FGMC method [17]:

p(Λs,Λn|x) =
∏

[Λsf(xi) + Λnb(xi)]e
−(Λs+Λn), (4)

where x – ranking statistic (e.g., FAR), Λs – number
of signal counts; Λn – number of noise counts; f(xi) =
f(FARi) – foreground (signal) model, determined from
the injection set; b(xi) = b(FARi) = 1/FARi – back-
ground model, estimated analytically.
We use this equation to fit the empirical FAR dis-

tribution for confidence intervals of Λs and Λn using
log likelihood method from bilby Bayesian inference
Python library. Then, we calculated the range of pastro
values using the minimum Λs and maximum Λn for the
lower end of the pastro confidence interval and the maxi-
mum Λs and minimum Λn for the upper end as follows:

pastro(FAR) =
Λsf(FAR)

Λsf(FAR) + Λnb(FAR)
(5)

By doing this calculation, we obtain combined pastro
values for Trials and Harmonic methods and apply equa-
tion (3) to find the combined value for the Max method.
This allows us to compare the effectiveness of all three

2 https://zenodo.org/record/5759108
3 https://github.com/seth-olsen/new BBH mergers O3a IAS pipeline
4 https://github.com/gwastro/4-ogc
5 https://zenodo.org/record/5117799
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approaches by comparing their combined pastro results.
First, we compare the number

N = |{ pastro | pastro > 0.5 }| (6)

of events whose largest pastro values consistent with
the uncertainty pass the pastro threshold for the real O3a
data and the set of injections using the three methods.
Then, using real data, we analyze the purity of results
for each method using the following equation:

purity =

∑N
i=1 p

i
astro

N
, (7)

which is a sum of pastro values for events that passed
a threshold of 0.5 divided by the number of those events.
The sum of pastro values can be interpreted as the num-
ber of real events present in the set, which makes the
calculated fraction a measure of purity of the catalog.
However, since purity estimates depend on the method
of calculating pastro, if the pastro calculation is performed
incorrectly, purity results will also be incorrect.

III. RESULTS

A. False Alarm Rates

By applying methods 1 and 2 to the injection set,
we found that the harmonic mean combination of all
pipelines recovers about 1.1% more events with FAR <
1 yr−1 than the combination that uses the trials factor.
Since the injection set consists of simulated events and
does not allow for false positive detections, the higher
number of recovered signals shows that the harmonic
mean method has a slightly better performance. How-
ever, this difference was not noticeable for the real signals
(N < 50), and the two methods resulted in effectively the
same values for O3a events. As a result, we will provide
only the harmonic mean combined values for most of the
analysis in this section to avoid redundancy.

Using the equation (2), we calculated combined FARs
for all events that were detected by at least one of the
pipelines included in each of the following datasets:

1. O3a data for GstLAL (g), PyCBC (p), PyCBC
BBH (b), MBTA (m), IAS (i), and OGC (o).

2. O3a data for GstLAL (g), PyCBC (p), PyCBC
BBH (b), and MBTA (m).

3. Injection set data for GstLAL (g), PyCBC (p), Py-
CBC BBH (b), MBTA (m), and cWB (c)6.

6 PyCBC = hyperbank = all-sky, PyCBC BBH = highmass.

Then, we calculated the number of events that pass
the threshold of combined FAR < 1 yr−1 for each com-
bination of different number of pipelines. Depending on
a combination, joint searches detected between 24 and 40
events in dataset 1, 24-35 events in dataset 2, and 71763-
96173 events in dataset 3 as compared to 22-35 events
detected by each individual pipeline in datasets 1 and 2
and 18260-77289 events in the injection dataset 3.
Based on these calculations, we identified the combi-

nations of pipelines that detect the most events for each
number of pipelines in a group and presented these results
in a form of decision trees shown in Fig. 1. For example,
among the combinations of two pipelines used in dataset
1, the highest number of events (40) was detected by the
combination of GstLAL (g) and IAS (i) searches, which
is labeled as “gi”. Interestingly, the maximum number
of detected events decreases as we add more searches for
real data (datasets 1 and 2) and increases for the injec-
tion set (dataset 3). This difference can be explained by
the presence of false positive detections in the real data
but not in the simulated data, which will be discussed in
more details in Conclusions.
In the top part of Fig. 1, we notice that both the

GstLAL (g) pipeline and the combination of all searches
(gibmpo) detect the same number of signals, which is
35. 31 of them are the same, but there are four signals
that are detected only by GstLAL and not by the com-
bination (GW190426 152155, GW190431 023648,
GW190731 140936, GW190917 114630), and
different four signals that are detected
by the combination and not by GstLAL
alone (GW190413 134308, GW190514 065416,
GW190725 174728, GW190925 232845).
The next question that we wanted to address is

whether the trend of recovering more injected events with
addition of more pipelines, observed in the bottom part of
Fig. 1, is true for any threshold value. In Fig. 2, we com-
pare the number of recovered injections for the same five
combinations of searches (g, gp, gpb, gpbm, and gpbmc)
and for thresholds from 105 to 10−4 yr−1. The graph
shows that adding more pipelines leads to more detected
events for thresholds larger than 10−4yr−1, but for very
low thresholds the difference becomes negligible. More-
over, the curves for “gpbm” and “gpbmc” almost per-
fectly overlap, which illustrates that the addition of the
fifth (cWB) pipeline does not lead to any significant in-
crease.

B. pastro

In this section, we compare combined pastro results
for injection sets calculated using the three methods de-
scribed earlier. The results of this comparison are shown
in Fig. 3, where we can see that all three combined
searches find more events with pastro > 0.5 than any in-
dividual pipeline included in the combination. The Max
method detects about 2.3% more events than the Tri-
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FIG. 1: Combinations of pipelines that detect the most events for each number of searches. GstLAL (g),
PyCBC (p), PyCBC BBH (b), MBTA (m), cWB (c), IAS (i), and OGC (o). Top: Combinations of LVK, IAS,
and OGC pipelines based on O3a data. Middle: Combinations of LVK pipelines based on O3a data. Bottom:
LVK pipelines based on the injection set. Numbers above the boxes show the number of candidates passing
the threshold of FAR < 1 yr−1, and numbers above and below the arrows indicate the number of events lost
and gained due to the addition of an extra pipeline to the calculation of the combined FARs.

als method, and the Trials method detects 0.2% more
results than the Harmonic method. However, the differ-
ences between these combinations is much smaller than
the advantage each of them gives in comparison to any
of the individual pipelines.

For real events, however, the same comparison leads
to very different results. In Fig. 4, the bars correspond
to the number of events detected by each search or a
combination of searches, and we see that the Trials and
Harmonic methods detect less events than the GstLAL
pipeline alone. Moreover, the Max methods detects 58-
62% more events than the first two combination methods.

At the same time, in case of real events, we can calcu-
late the purity of each search using equation (7), and the
results are shown above each bar. Blue (darker) portions
show the sum of pastro values or the number of real events
we expect to see among all detected events, and the gray
(lighter) parts show the remaining number N −

∑
pastro,

which corresponds to noise. From this result, we can

see that, although the Max method detects significantly
more events, it also leads to lower purity of the results.
At the same time, all individual pipelines as well as Trials
and Harmonic combinations have purity estimates close
to 90%.

Finally, to characterize the Max method, we calculate
the purity of the 76 events it detected using the sum
of pastro values found with the Harmonic method. The
result is 69%, which is noticeably lower than the 85%
purity from Max method, as shown in Fig 5.

IV. CONCLUSIONS

In this work, we described and compared three differ-
ent methods of combining FAR and pastro results from
multiple pipelines. We found that GstLAL detects the
most events among individual pipelines for injections
and O3a data both in terms of FAR and pastro. At
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FIG. 2: Number of injected events recovered with combined FAR below a certain threshold depending on a
group of combined searches and a threshold value in yr−1. g – GstLAL, gp – GstLAL and PyCBC, gpb – pg
with PyCBC BBH, gpbm – pgb with MBTA, gpbmc – gpbm with cWB. Adding more pipelines leads to more
detected events for thresholds larger than 10−4yr−1.
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FIG. 3: Number of injections recovered with pastro > 0.5 by four LVK pipelines and three ways to combine
their results, namely Trials, Harmonic, and Max methods. The figure illustrates that combined searches detect
more injected events than individual ones.

the same time, results from the injection set show that
combinations of pipelines detect significantly more events
that pass FAR and pastro thresholds than any individual
pipeline.

On the other hand, combining results from more

pipelines for O3a data does not lead to any increase in the
number of events passing the FAR threshold, and only
one of the combination methods found more events pass-
ing the pastro threshold than GstLAL. This can either
mean that combining pipeline results using our methods
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FIG. 4: Number of real events detected with pastro > 0.5 for four LVK pipelines and three ways of combining
them. The purity of each result is shown above each bar, and colors indicate the number of astrophysical and
noise events expected in each set of detections. This figure shows that Max method detects the most events,
but also leads to lower purity of the results.

is not effective for available data or that the smaller num-
ber of signals is more accurate and possibly eliminates the
false positive detections present in single-pipeline results.

Among three different ways of combining FAR distri-
butions, applying the trials factor and finding a harmonic
mean give similar pastro results. The method of finding
the maximum of individual pastro values finds 2.3-2.5%
more events for simulated data and 58-62% more events
for real data than the other two methods. However, while
the estimated purity for Trials and Harmonic methods
stays close to 91-92% and is similar to the estimates for
individual pipelines, the purity of the Max search might
be as low as 69%. Since Max method is used in current
LVK pastro analysis, this result suggests that purity of
the GWTC catalogs is likely overestimated.

The results obtained with injected events are not sub-
ject to false positive detections, so all three combina-
tions of pipelines lead to an increase in true positive
rates with the Max method having the highest and Har-
monic method having the lowest values. At the same
time, purity results for real events can be used to quali-
tatively analyse the false positive rates of the same com-
binations. The Trials method showed the highest purity
(91.6%), followed by Harmonic method (90.8%), and the
Max method showing the lowest result (84.8%), while
single-pipeline purity ranging from 89.8 to 92.1%. This
result is consistent with the statistical fact that using
single-inference results in the multiple-comparison prob-

lem increases the false positive rate [12].
In gravitational-wave searches, an increase in true posi-

tive rates leads to the detection of more events, but an in-
crease in false positive rates can lead to false-alarm alerts
for astronomical follow-up as well as an exaggerated pic-
ture of black hole and neutron star populations. The
results of this work show the need of combining results
from multiple pipelines while also controlling the family-
wise error rates, false discovery rates, and purity. Our
analysis indicates that the Bonferroni correction applied
to FARs might be the simplest working solution to this
problem, but further investigations are needed to find
the most statistically justified approach, especially once
more GW detections are available for statistical studies.

V. ACKNOWLEGEMENTS

The authors gratefully acknowledge contributions and
support of the California Institute of Technology LIGO
Laboratory, California Institute of Technology Student-
Faculty Programs, and the National Science Foundation.
This material is based upon work supported by NSF’s

LIGO Laboratory which is a major facility fully funded
by the National Science Foundation. LIGO was con-
structed by the California Institute of Technology and
Massachusetts Institute of Technology with funding from
the National Science Foundation, and operates under co-



7

52.69, 69%

23.31, 31%

Sum of Harmonic p-values

Astro Noise

64.44, 85%

11.56, 15%

Sum of Max p-values

Astro Noise

FIG. 5: Purity of 76 events detected by the Max method calculated from the sum of pastro values from Max
and Harmonic methods. The number estimated with the Harmonic method is much lower, which indicates
that purity might be overestimated.

operative agreement PHY-1764464. Advanced LIGO was
built under award PHY-0823459. The authors are grate-
ful for computational resources provided by the LIGO

Laboratory and supported by National Science Founda-
tion Grants PHY-0757058 and PHY-0823459. This work
carries LIGO document number T2300203.

[1] LIGO Scientific Collaboration and Virgo Collaboration.
GW150914: First results from the search for binary black
hole coalescence with Advanced LIGO. Phys. Rev. D,
93:122003, Jun 2016.

[2] LIGO Scientific Collaboration, Virgo Collaboration, and
KAGRA Collaboration. GWTC-3: Compact Binary Co-
alescences Observed by LIGO and Virgo During the Sec-
ond Part of the Third Observing Run. arXiv:2111.03606,
Nov 2021.

[3] F. S. Broekgaarden. ChatGPT scores a bad birdie in
counting gravitational-wave chirps. arXiv:2303.17628,
Apr 2023.

[4] C. Capano, T. Dent, C. Hanna, et al. Systematic errors in
estimation of gravitational-wave candidate significance.
Phys. Rev. D, 96:082002, Oct 2017.

[5] S. A. Usman, A. H. Nitz, I. W. Harry, et al. The PyCBC
search for gravitational waves from compact binary coa-
lescence. Classical and Quantum Gravity, 33(21):215004,
Oct 2016.

[6] S. Sachdev, S. Caudill, H. Fong, et al. The GstLAL
Search Analysis Methods for Compact Binary Mergers
in Advanced LIGO’s Second and Advanced Virgo’s First
Observing Runs. arXiv:1901.08580, Jan 2019.

[7] F. Aubin, F. Brighenti, R. Chierici, et al. The MBTA
pipeline for detecting compact binary coalescences in the
third LIGO–Virgo Observing Run. Classical and Quan-
tum Gravity, 38(9):095004, 2021.

[8] T. Venumadhav, B. Zackay, J. Roulet, et al. New search
pipeline for compact binary mergers: Results for binary
black holes in the first observing run of Advanced LIGO.
Phys. Rev. D, 100:023011, Jul 2019.

[9] A. H. Nitz, S. Kumar, Y.-F. Wang, et al. 4-OGC: Cata-
log of gravitational waves from compact-binary mergers.

arXiv:2112.06878, Dec 2021.
[10] S. Banagiri, C. P. L. Berry, G. S. Cabourn Davies, et al.

A Unified pastro for Gravitational Waves: Consistently
Combining Information from Multiple Search Pipelines.
arXiv:2305.00071, May 2023.

[11] LIGO Scientific Collaboration and Virgo Collaboration.
GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs. Phys. Rev.
X, 9:031040, Sep 2019.

[12] Yoav Benjamini and Yosef Hochberg. Controlling the
false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical So-
ciety. Series B (Methodological), 57(1):289–300, 1995.

[13] Daniel J. Wilson. The harmonic mean p-value for com-
bining dependent tests. Proceedings of the National
Academy of Sciences, 116(4):1195–1200, 2019.

[14] C. E. Bonferroni. Teoria statistica delle classi e calcolo
delle probabilita. Pubblicazioni del R Istituto Superiore
di Scienze Economiche e Commerciali di Firenze, 1936.

[15] The LIGO Scientific Collaboration and the Virgo Col-
laboration. GWTC-2.1: Deep Extended Catalog of
Compact Binary Coalescences Observed by LIGO and
Virgo During the First Half of the Third Observing Run.
arXiv:2108.01045, May 2022.

[16] S. Olsen, T. Venumadhav, J. Mushkin, et al. New binary
black hole mergers in the LIGO-Virgo O3a data. Phys.
Rev. D, 106:043009, Aug 2022.

[17] W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler. Count-
ing and confusion: Bayesian rate estimation with multi-
ple populations. Phys. Rev. D, 91:023005, Jan 2015.


	Understanding Combined Results From Multiple GW Searches  Using Information Theory
	Introduction
	Methods
	Results
	False Alarm Rates
	pastro

	Conclusions
	Acknowlegements
	References


