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Determining whether a gravitational wave (GW) signal is of astrophysical origin or is caused by
terrestrial noise still presents a challenge to the GW community. Current searches estimate the
significance of events by calculating the false alarm rate (FAR) and pastro, but these results are
limited to a single search pipeline. In this work, we suggest a method of combining GW information
by calculating harmonic mean FARs for different groups of GW searches and using them as the
basis for calculating a joint pastro. Using this approach, we compare the effectiveness of different
combinations of searches, revisit the significance of previously detected events, and investigate the
correlations between pipelines using the language of information theory.

I. INTRODUCTION

Since the first detection of gravitational waves
(GWs) [1], the total number of GW candidates reported
by LIGO-Virgo-KAGRA (LVK) Collaboration reached
90 [2] and continues to grow [3]. At the same time, deter-
mining whether a certain signal has astrophysical origin
or is caused by terrestrial noise still remains a challenge,
which leads to the uncertainty in the number of detected
compact mergers [4].

Noisy local environments that are difficult to model,
observations with multiple detectors, and inability to
shield the instruments from GW signals result in the de-
pendence of the estimated significance on a search analy-
sis [5]. Two main approaches that are used to search for
events include matching signals to the compact binary
coalescence waveform templates and searching for tran-
sient signals across the network of detectors with minimal
modeling. Variations of the first method are used in Py-
CBC [6], GstLAL [7], MBTA [8], IAS [9], and OGC [10]
pipelines, and the second method is used in the cWB
pipeline [2]. There are several technical differences be-
tween search pipelines, so they result in different estima-
tions of the probability of an astrophysical origin. How-
ever, all pipelines are designed to search for the same
signals, so their results are not fully independent and
should correlate.

In order to calculate significance of events, we intro-
duce two quantities, false alarm probability and pastro.
False alarm probability is a probability of observing a co-
incidence or a “false alarm” with a signal-to-noise ratio
(SNR) equal or higher than a certain value. As a re-
sult, to confirm the presence of a signal, one must show
that the probability to obtain the observed event in a
dataset that only contains noise is smaller than a given
threshold [5]. It is also possible to convert false alarm
probability into a related quantity called the false alarm

rate (FAR), which is measured in yr−1 and is usually
included in GW catalogs, e.g., [2].
On the other hand, pastro is defined as a probability

that a GW candidate has astrophysical origin and is not
caused by terrestrial noise. It is calculated by combining
the rates at which triggers – outputs of a search pipeline
– are generated by both astrophysical and noise sources,
i.e., both false and true alarm rates [11].

II. METHODS

The goal of this project is to develop a method of com-
bining information from multiple GW search pipelines
and analyze what new knowledge these combinations pro-
vide about observed compact mergers. In addition, we
are interested in analysing the contributions of the IAS
and OGC pipelines, developed outside of the LVK col-
laboration, to the results of the internal pipelines.
In order to do this, we calculate the combined FAR

using FARs from individual pipelines that correspond to
the same events as a harmonic mean, which has a sta-
tistical advantage for combining results from dependent
tests [12]. This corresponds to the equation below:
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We can rewrite this equation using inverse false alarm
rates (IFARs), measured in units of time, as follows:
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Combined IFAR is then used as a new statistic that
characterizes GW events which allows us to revisit their
significance and observe how it changes devending on a
specific combination of pipelines and whether we use real
data or an injection set.

In addition, applying the approach used for a toy
model in [13], we use IFAR distributions of the injection
set to investigate the correlations between pipelines.

III. RESULTS

Using the equation (2) described in the Methods sec-
tion, we calculated combined IFARs for all combina-
tions of all available search pipelines for three different
datasets:

1. The set of IFARs of all triggers that were detected
by at least one pipeline among PyCBC (highmass
and all-sky treated as two separate pipelines), Gst-
LAL, or MBTA during the O3a obsering run [14],
accesed via [15].

2. Same set as in dataset 1 but with addition of
two pipelines external to the LVK collaboration,
IAS [16] and OGC [10], data for which was accessed
via [17] and [18] respectively.

3. The set of IFARs for an injection set that includes
five LVK searches, namely PyCBC (BBH and hy-
perbank treated as two separate pipelines), Gst-
LAL, MBTA, and CWB that contains 512431 in-
jections.

After calculating combined IFARs for all events that
were detected by at least one of the pipelines included
in a dataset, we calculated the number of events that
passes the threshold of FAR > 1 yr for each combina-
tion of different number of pipelines. Depending on a
combination, joint searches detected between 25 and 36
events in dataset 1, 25-41 events in dataset 2, and 71763-
96173 events in dataset 3 as compared to 23-36 events
detected by each individual pipeline in datasets 1 and 2
and 18260-77289 events in the injection dataset.

Based on these calculations, we identified the combi-
nations of pipelines that detect the most events for each
number of combined pipelines and presented these results
in a form of decision trees shown in Fig. 1. The combina-
tions of pipelines are labeled according to the first letters
of the searches that the combination includes, namely
GstLAL – “g”, PyCBC – “p”, PyCBC highmass – “h”,
MBTA – “m”, CWB – “c”, IAS – “i”, and OGC – “o”.
For example, among the combinations of two pipelines
used in dataset 1, the highest number of events (41) was
detected by the combination of GstLAL (“g”) and IAS
(“i”) searches, which is labeled as “gi”.

Interestingly, the maximum number of detected events
decreases as we add more searches including real data

(datasets 1 and 2) and increases for the injection set
(dataset 3). The addition of events that comes from
adding more pipelines to the combined IFAR calculation
for the injection set is illustrated in Fig. 2, which shows
that GstLAL detects about 80% of the number of events
that the combination of all LVK pipelines detects, and
the combination of GstLAL and PyCBC detects about
90% of that number. In addition, we calculated that
the harmonic mean combination of all pipelines recovers
about 1.1% more events than the combination that uses
the Bonferroni correction (taking the maximum IFAR
among the pipelines and applying a trials factor).
Next, we compared the lists of candidates passing the

threshold of combined IFAR > 1 yr between the combi-
nation of LVK pipelines (GstLAL, two PyCBC searches,
and MBTA) and the combination of internal and ex-
ternal pipelines (GstLAL, two PyCBC searches, MBTA,
IAS, and OGC). The list of events in given in Table I,
which shows that the combination of LVK pipelines de-
tect 33 events, and the combination of all searches de-
tects 35 events. It is important to not that, although
GW190514 065416 and GW190725 174728 only passed
the IFAR threshold after the inclusion of two external
pipelines, both events were officially reported in the O3a
LVK publication [19].
Finally, we report the preliminary results of the qual-

itative estimation of correlation between different LVK
pipelines that are illustrated using the corner plot in
Fig. 3. The plot shows the pairwise correlations be-
tween IFAR distributions for CWB, GstLAL, MBTA,
PyCBC BBH, and PyCBC hyperbank searches.

IV. NEXT STEPS

The final part of my SURF project will be dedicated
to the calculation of joint pastro using the results from
multiple pipelines. In order to do this, we will need to
fit FAR distributions to the signal and noise model and
analyze how the probability of a signal being of an as-
trophysical origin changes depending on which pipelines
we take into the account. We are particularly interested
in seeing if the combined results obtained for O3a can-
didates suggest change in the classification of any of the
events.
In addition, we are planning to continue the analysis

of the correlations between search pipelines by finding a
quantitative representation of the results shown in Table
I. Moreover, we intend to find an explanation of why we
observe a decrease in detected events with addition of
pipelines for real data, but an increase in the same case
for the injected data. We are interested in supporting our
conclusions using the language of information theory and
in terms of concepts like mutual information, interaction
information, and total correlation.
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GW GPS Time LVK IFAR (yr) LVK+ IFAR (yr) LVK Detected LVK+ Detected

GW190408 181802 1238782700 1.17× 1014 7.82× 1013 + +

GW190412 053044 1239082262 1.30× 1026 8.66× 1025 + +

GW190413 134308 1239198206 2.14 1.67× 103 + +

GW190421 213856 1239917954 1.06× 102 1.99× 103 + +

GW190425 081805 1240215503 7.39 4.93 + +

GW190503 185404 1240944862 1.07× 105 7.33× 104 + +

GW190512 180714 1241719652 3.24× 1010 2.16× 1010 + +

GW190513 205428 1241816086 1.88× 104 1.45× 104 + +

GW190514 065416 1241852074 9.14× 10−2 8.16 – +

GW190517 055101 1242107479 8.07× 102 2.22× 103 + +

GW190519 153544 1242315362 1.22× 105 8.32× 104 + +

GW190521 030229 1242442967 1.94× 102 2.64× 102 + +

GW190521 074359 1242459857 4.97× 1031 3.31× 1031 + +

GW190527 092055 1242984073 1.11 1.10 + +

GW190602 175927 1243533585 2.29× 106 1.53× 106 + +

GW190620 030421 1245035079 2.24× 101 1.49× 101 + +

GW190630 185205 1245955943 1.80× 109 1.20× 109 + +

GW190701 203306 1246048404 4.82× 101 3.21× 101 + +

GW190706 222641 1246487219 5.84× 103 5.93× 103 + +

GW190707 093326 1246527224 9.32× 1013 6.22× 1013 + +

GW190708 232457 1246663515 8.10× 102 5.40× 102 + +

GW190720 000836 1247616534 5.66× 106 3.77× 106 + +

GW190725 174728 1248112066 7.14× 10−1 1.49 – +

GW190727 060333 1248242631 9.15× 108 6.10× 108 + +

GW190728 064510 1248331528 4.61× 1014 3.07× 1014 + +

GW190803 022701 1248834439 4.06 3.54 + +

GW190814 211039 1249852257 4.62× 1010 3.08× 1010 + +

GW190828 063405 1251009263 4.98× 1025 3.32× 1025 + +

GW190828 065509 1251010527 1.03× 104 8.82× 103 + +

GW190910 112807 1252150105 8.72× 101 5.81× 101 + +

GW190915 235702 1252627040 3.61× 104 2.62× 104 + +

GW190924 021846 1253326744 4.97× 108 3.31× 108 + +

GW190925 232845 1253489343 3.47× 101 7.72× 101 + +

GW190929 012149 1253755327 1.72 1.67× 103 + +

GW190930 133541 1253885759 3.56× 101 1.74× 103 + +

TABLE I: The list of O3a events passing the threshold of IFAR > 1 yr for the combination of LVK pipelines
(PyCBC, GstLAL, MBTA) and with the addition of the IAS and the OGC pipelines to the combination
(labeled LVK+).
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FIG. 1: Combinations of pipelines that detect the most events for each number of searches. GstLAL – “g”,
PyCBC – “p”, PyCBC highmass – “h”, MBTA – “m”, CWB – “c”, IAS – “i”, and OGC – “o”. Top:
Combinations of LVK, IAS, and OGC pipelines based on O3a data. Middle: Combinations of LVK pipelines
based on O3a data. Bottom: LVK pipelines based on the injection set. Numbers above the boxes show the
number of candidates passing the threshold of IFAR > 1 yr, and numbers above and below the arrows
indicate the number of events lost and gained due to the addition of an extra pipeline to the calculation of the
combined IFARs.
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FIG. 2: Increase in the number of events passing the threshold upon the addition of results from more
pipelines to the calculation of the combined IFAR for the injection set. An illustration of the numerical
information given in the bottom part of Fig. 1. For example, the dark blue box shows the number of events
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detected by the combination of two pipelines.
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FIG. 3: Qualitative analysis of correlation between IFAR (yr) distributions of different LVK pipelines.
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