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We expand upon gravitational-wave analysis by considering the possibility of gravitationally lensed pairs of
gravitational waves, a phenomenon that has predominantly been studied in regard to electromagnetic waves.
Much of the previously established research in gravitational lensing is extended to lensed gravitational waves
due to similarity in behavior to electromagnetic waves. Under the lensing hypothesis, we assume the lensed
counterparts are subthreshold due to the relative time delay between paths and consequential demagnification
effects. The database of registered gravitational waves are considered potential super-threshold events, and the
parameters of our search pipeline are altered so subthreshold events significant to the original waveform are reg-
istered as a trigger. We do this using the gstLAL-based TESLA search pipeline, which increases the likelihood
of detecting these subthreshold events by optimizing the template bank and considering only templates capable
of recovering the posterior samples given by Bayes probability distribution. The results are then ranked by the
likelihood of the signal being astrophysical in origin and logged for further analysis to determine if they are a
lensed counterpart. We aim to improve the TESLA method by modifying the search pipeline’s code to produce
a ranked list according to lens model. This is done by altering the effective distances to gain information on
potential lensed counterparts and assessing the behavior of gravitational waves in various lens models. We will
then determine the overall performance change in a final simulation campaign.

INTRODUCTION

The observation of gravitational lensing of gravitational
waves has many relevant applications in the fields of cosmol-
ogy, astrophysics and astronomy. These include the localisa-
tion of merging black holes, testing gravitational wave speed
of propagation and polarization content, and the detection of
intermediate-mass or primordial mass black holes[1]. Gravi-
tational lensing of electromagnetic waves is an important phe-
nomenon, yet we overlook immense amounts of information
about the universe by ignoring the gravitational lensing of
gravitational waves. Thus, the accuracy and impact of our
analyses of celestial bodies, their interactions, and spacetime
itself drastically improve when we consider the latter’s effects.
Additionally, while the distribution of dark matter is tradition-
ally analyzed by its lensing effect of a background source’s
EM waves, observable matter accounts for only 5% of the
universe [2]. With gravitational lensing of GWs, astronomers
can chart the dark matter distribution of the universe with-
out relying on the presence of background light sources, us-
ing the lensing effects from binary black hole sources instead.
Gravitational wave strain from these events can be measured
at greater distances than the images formed from most gravi-
tationally lensed, light-producing sources, making it more op-
timal for long range observations. Because gravity is a uni-
versal law, meaning all objects with mass experience it, dark
matter clusters act as the lens in these events. Gravitational
lensing of gravitational waves also provides us with new ways
of testing general relativity and allows us to study various rel-
ativistic systems[3].

While participating in the 2023 LIGO WAVE program,
I will conduct research aimed at improving the detectors’
search sensitivity in registering sub-threshold, strongly lensed
events. To accomplish this, I will develop a toy lens model,
run this lens model through various simulations to obtain the

relative time delay and magnification distributions, incorpo-
rate this information into the TESLA search pipeline by mod-
ifying the likelihood portion of the gstLAL code, and run a
simulation campaign to determine the performance of these
changes.

In this proposal, I provide background information on
LIGO, gravitational waves, gravitational lensing, and the var-
ious search pipelines used in analysis, specifically the gstLAL
and TESLA methods. I then further explain the objectives
of this project and describe the methodology in accomplish-
ing this research, including analyses of the toy lens models
and potential code modifications. Finally, I provide a tentative
overview of my working schedule for the project’s duration.

BACKGROUND

What is LIGO?

Short for Laser Interferometer Gravitational Wave Obser-
vatory, LIGO searches for gravitational wave signals coming
from deep space, likewise making the smallest and most accu-
rate measurements to date. Similar experiments began in the
1960s and, with the development and further improvement of
interferometric detectors, LIGO’s first detector was completed
in the early 2000s. The (now updated) detectors are located
in Hanford, Washington and Livingston, Louisiana, making
them around 3000 kilometers in distance from each other,
or 0.01 lightsecond. The latter measurement is relevant be-
cause gravitational waves propagate at the same speed as light,
which is a concept I will cover more of later. The detector’s
large separation helps determine any local noise (i.e. environ-
mental or instrumental) and also helps confirm gravitational
wave events when registered on both with the appropriate time
delay. They also serve in measuring wave polarizations and
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source sky localization [3]. To establish further confidence
in these readings, the LIGO Scientific Collaboration (LSC)
joined teams with Italy’s VIRGO project in 2007. The next
year, the National Science Foundation provided funding for
Advanced LIGO, which became fully functional in 2015[4].

On September 14, 2015, during the first official observatory
run O1, both LIGO detectors simultaneously observed gravi-
tational wave GW150914, making it the first direct detection
of the phenomenon. This observation corroborated Einstein’s
General Theory of Relativity, which predicted the nonlinear
electrodynamics of black holes. Analysis showed GW150914
was in fact the coalescence of a binary black hole, which also
marked the first observation of such an event. The following
is discussed in more detail later but, for clarity, the signal in-
creased by 115 Hz in 0.2 s. A neutron star binary or neutron
star-black hole binary would not produce the required chirp
mass or orbital frequency for this to occur, thus it’s most prob-
able that it was caused by a BBH[3].

As of the second half of LIGO’s third observing run (O3B),
there’s been a total of 90 observed events[5]. This includes the
previously described GW150914[3] and GW170817, which
was the gravitational wave emitted from a BNS merger. The
latter is the largest registered GW signal to date, with a com-
bined signal to noise ratio (SNR) of 32.4[6]. In comparison,
GW150914 had a combined SNR of 24, although the VIRGO
detector was not in operation at the time of the event[3]. Fig-
ure 1 shows the current number and type of CBC events de-
tected by the LVK collaboration.

Figure 1. Masses in the Stellar Graveyard [Image credit: LIGO-
Virgo/Aaron Geller/Northwestern]

Advanced LIGO operates using a modified Michelson in-
terferometer, often called a Michelson-Morley interferometer.
Each arm of the detector has a length of 4 km, meaning

Lx = Ly = L = 4km. (1)

The large arm lengths are necessary because a typical gravita-
tional wave produces displacements of only around 10−21m.
The detector’s arms are placed in an L-shape because the com-
pressions and expansions of spacetime caused by a GW are
orthogonal, causing the arms to experience different amounts

of displacement when a gravitational wave passes through.
When this occurs, this difference in length is given by the
equation

∆L(t) = ∆Lx −∆Ly = h(t)L, (2)

where h(t) is the gravitational wave strain[3]. How-
ever, instead of measuring displacements smaller than one-
thousandth of a neutron, LIGO relies on the interference of
light to detect such small changes. To detect this, a laser
beam is directed towards a beam splitter such that half of the
beam is reflected down one arm and the other half is transmit-
ted down the other arm. Each end has a mirror to reflect the
beam, and this reflected beam recombines at the photodetec-
tor, set to have destructive interference when there is no GW
present. When a GW passes through, the length of the arms
change such that the recombined light instead produces con-
structive interference. There is also a power-recycling mirror
at the source that amplifies the power of the reflected wave
from 20W to 100 kW, further helping the photodetector regis-
ter the energy spike [3]. We measure this power output, which
is really the phase difference between the recombined beams,
and use transformation tools to derive the gravitational wave
strain of the event.

What is a Gravitational Wave?

To understand gravitational waves, one must first realize
the connection between space and time proposed by Einstein’s
General Theory of Relativity. Einstein began by exploring
the relationship between gravitational mass, mg , and inertial
mass, mi, which were simply assumed to be equal. Einstein
did not make this assumption and instead worked on deriving
the relationship from the bottom up. By studying the behavior
of objects in a gravitational field, he realized that these two are
equivalent only by accounting for the curvature of spacetime.
This path is called a geodesic, and under this hypothesis, the
equivalence of inertial and gravitational mass can be proven.

This led to the Equivalence Principle, which states that the
only truly inertial state of an object in a gravitational field is in
free-fall, or when it can move freely along its geodesic. This
state of free-fall is called an inertial reference frame, or IRF.
Instead of a force, Einstein proposed that gravity is a natural
consequence of energy and mass interacting with spacetime,
not each other. This is where the understanding of spacetime’s
fabric-like structure originates— the more massive an object
is, the more it curves its specific region of spacetime. This
ultimately led to the Einstein equation, which relates the ge-
ometry of spacetime to the distribution of matter and energy
within it. The equation takes a 4 × 4 matrix, Tµν , describing
the density and flow of matter and energy and outputs a 4× 4
matrix (tensor), Gµν describing the curvature of spacetime,
given as

Gµν = 8πGTµν , (3)
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where G is the gravitational constant. This equation shows
the interdependence between matter and spacetime or, as John
Wheeler famously said, that ”spacetime tells matter how to
move; matter tells spacetime how to curve.” Specifically, Tµν

represents the Stress-Energy tensor defined as

Tµν = (ρ0 + P0)u
νuµ + P0g

µν , (4)

where ρ0 describes the object’s density, P0 describes its pres-
sure and uµ describes its four velocity, which is the object’s
motion in four-dimensional spacetime. The matrix given by
Gµν is also known as the Einstein tensor, which is constructed
using the metric tensor and multiple contractions of the Rie-
mann tensor, the only tensor capable of describing curvature.
Thus, the Einstein tensor has the following equivalence:

Gµν ≡ Rµν − 1

2
gµνR. (5)

Rµν is the Ricci tensor, R is the Ricci scalar and gµν is the
metric tensor. The Ricci scalar is a contraction of the Ricci
tensor, which is a contraction of the Riemann tensor. The cur-
vature is described by gµv , or the metric tensor describing the
geometry of a particular region. For example, the weak field
metric is defined as the Minkowski metric, nµν , and a small
perturbation term, hµν , such that

gµν = nµν + hµν . (6)

Of course, the effects of a gravitational field cannot be
completely dismissed for objects that aren’t infinitesimally
small. This is accounted for using tidal forces, which mea-
sures the stress/strain an object experiences while in a gravi-
tational field. [7]

Because spacetime’s geometry is dependent on the distri-
bution of mass, accelerating objects will produce perturba-
tions in spacetime that ripple outwards, known as gravita-
tional waves. Anything with mass can produce gravitational
waves, however most these waves are undetectable due to the
larges distances traveled. Thus, we rely on extremely massive,
rapidly accelerating objects for gravitational wave analysis,
such as neutron stars and black holes. Objects like lone neu-
tron stars (i.e. non-binary with a constant spin) produce con-
tinuous gravitational waves caused by irregularities in their
shape and, as the name suggests, these gravitational waves
have frequencies and amplitudes that change very slowly with
time.

Nonetheless, there are many massive, extremely dense and
rapidly moving bodies like neutron stars and black holes or-
biting each other, known as binaries. Over time, these sys-
tems lose energy through gravitational radiation (i.e. by emit-
ting gravitational waves), which causes their orbital distance
to shrink and their acceleration to increase. This initial phase
is known as the inspiral and has relatively stable readings by
the detectors. Eventually, their orbital frequency gets large
enough to noticeably affect the readings of their emitted grav-
itational wave, showing a gradual increase in amplitude and
GW frequency. When these massive objects join, there’s

an extreme surge in energy and the gravitational wave strain
peaks, called the merger stage. After merging, the joint bod-
ies move to the ringdown stage. This three-step process is
called compact binary coalescence, where compact describes
extremely high-density objects. To better describe the spe-
cific system, these events are divided into three subclasses:
binary neutron star (BNS), binary black hole (BBH), and neu-
tron star-black hole binary (NSBH) mergers. Gravitational
waves produced by these binary systems will be the focus
candidates of the project. We can use the frequency f and
its time derivative ḟ obtained from the the Fourier transform
of the strain amplitude to derive their source parameters, such
as chirp mass Mc (measured in solar masses) where m1 and
m2 are the masses of each object in the binary and

Mc =
(m1m2)

3/5

(m1 +m2)1/5
=

c3

G

[
5

96
π−8/3f−11/3ḟ

]3/5
. (7)

In the case of GW150914, obtaining the chirp mass was essen-
tial in classifying the binary. Because M ≈ 30M⊙, this meant
mnet = m1 +m2 ≥ 70M⊙. Only a binary black hole system
could have the combined mass and orbital frequency capable
of this, as a BNS wouldn’t have the necessary mass while and
NSBH system would have a much smaller orbital frequency.
This event had an orbital frequency of 75 Hz, which is exactly
half the gravitational wave frequency[3].

As mentioned, when gravitational waves propagate, they
stretch and squeeze spacetime orthogonally. This results in
two different types of polarizations: plus polarization, h+,
when the perturbations occur vertically/horizontally and cross
polarization, h×, when they occur diagonally. We use this
information in determining how the GW affects the geome-
try of spacetime and in deriving information about the source
event’s parameters. The two different polarizations are shown
in figure 2.

Figure 2. Diagram of h+ and h×

It’s worth noting that unresolved gravitational waves get
collectively accounted for and termed stochastic background
signal. This can only be statistically analyzed, as the collec-
tive behavior of microlensing events in a population of lenses
contribute to this phenomenon. Furthermore, some of these
gravitational waves likely originate from the Big Bang, mak-
ing this a noteworthy field of study as it could help us better
understand the primordial universe.
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What is Gravitational Lensing?

Now that we’ve realized spacetime’s non-Euclidean geom-
etry, we can better understand the behavior of light in the pres-
ence of a gravitational field. Fermat’s principle states that light
always travels the path requiring the shortest amount of time,
however that path is now a curve (called a geodesic) rather
than a straight light. When light traveling through space en-
counters a gravitational field, it bends to follow the curvature
of its geodesic. This effect is known as gravitational lens-
ing and, while there are similarities to traditional lenses, this
lens results from spacetime’s interaction with a massive body
rather than the wave’s interaction with a medium. There are
three classifications of lensing, which are described below.

Strong lensing occurs when the ”lens” is extremely dense
and massive and thus produces 2 or more images of the source,
as in figure 3.

Figure 3. Strong lensing for a star forming galaxy

Weak lensing occurs when the lens object is massive and
dense enough to deflect incoming light but doesn’t have suf-
ficient parameters to produce multiple images. Instead, the
source image will appear distorted.

Microlensing accounts for the lensing effects of smaller ce-
lestial objects, such as stars. When stars pass in front of
each other, light from the background source is temporarily
brighter. However, this concept is not limited to interaction
between stars. For example, microlensing helps us detect ex-
oplanets by measuring the lensing star’s change in brightness
as an orbiting planet aligns with it and the observer.

While the study of gravitational lensing of light has been
proven and widely studied, the possibility of gravitational
waves undergoing gravitational lensing is still being explored.
After analyzing data from the first half of LIGO/VIRGO’s
third observing run (O3a), the LVK collaboration (LIGO,
VIRGO and KAGRA) concluded that there was no presence
of strong lensing of GWs[8]. However, lensed counterparts
are likely overlooked due to the effects of demagnification,
time delay and morse phase differences. By assuming ge-
ometric optics, we’re able to define the relative time delay,
which represents the time difference between lensed signals
coming from the same source. This also provides us with

additional information about the morse phase factor. Under
the same assumptions, we see that strong lensing can produce
multiple events that differ only by their degree of magnifi-
cation, or strain amplitude. Because we have yet to identify a
pair of strongly lensed gravitational waves, we assume that the
currently detected events are the magnified waveform, mak-
ing their counterparts fall under the threshold due to demag-
nification effects. Other than a decrease in amplitude, these
sub-threshold events have identical waveforms to their super-
threshold counterparts. However, it’s precisely this decreased
amplitude that makes them undetectable with traditional anal-
ysis methods. We can describe gravitational waves (or the sig-
nal in the detector) using 15 different parameters, which are
the masses m1 and m2, luminosity distance, inclination angle,
coalescence phase, polarization, spin and the detector specific
parameters of local coalescence time, local sky altitude, and
local sky azimuth. A sub-threshold, strongly lensed GW will
have the same parameters as the magnified waveform. This
allows us to perform a more targeted search using informa-
tion about the source, whose parameters are determined using
Bayesian statistics.

What is a Lens Model?

The point-mass lens model is simplest way of analyzing
gravitational lensing, which makes the assumption that the
lens is simply a point mass. In this model, shown in figure
4, light travels along a straight line until it is bent by the lens
and causes an image to appear at a deflection angle, α̂, from
the source. This angle is calculated as follows

α̂ =
4G

c2
M

ξ
, (8)

where c is the speed of light 3× 108 m
s , G is the gravitational

constant 6.67 × 10−11 Nm2

kg2 and ξ is the impact parameter,
which is the closest approach of light for a given lens. When
c is set equal to unity, or c=1, we have

α̂ =
4GM

ξ
. (9)

By examining the equation, we see that α̂ ∝ M
ξ , meaning

it depends only on the mass of the lensing system and the
source’s distance from the lens, measured orthogonal to the
optical axis (the line connecting the observer to the lens).
Thus, the lensing effect becomes more pronounced as the de-
flection angle increases[9].
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Figure 4. Point Mass Lens Model

If the source, lens and observer are perfectly aligned along
the optical axis, infinitely many images form and are distorted
into arcs that appear as a ring of light around the lens. The
angular radius of an Einstein ring is given by the following
equation:

θE =

√
4GM

dLS

dOLdOS
. (10)

When we assume small angles, sin(θ) ≈ θ and ξ = θdOL.
Furthermore, we see that the image is at height θdOS , which
is equivalent to βdOS + α̂dLS . Evaluating these values using
the previous equations, we get

θdOS = βdOS + α̂dLS (11)

= βdOS + dLS
4GM

ξ
(12)

= βdOS + dLS
4GM

θdOL
, (13)

and

θ2 = θβ + 4GM
dLS

dOSdOL
= θβ + θ2E . (14)

Solving for θ using the quadratic equation,

θ =
β ±

√
β2 + 4θ2E
2

. (15)

There are two solutions to this equation, meaning we see mul-
tiple images. Because

√
β2 + 4θE > β, multiple images

form when β ̸= 0, one at an angle θ+ above the optical
axis and another at an angle θ− below it. When β = 0, this
equation breaks down into the equation for an Einstein ring’s
angular radius, in which there are an infinite number of im-
ages. If we solve the lens equation for the time-delay, there
are three different solutions depending on the type lensed sig-
nal, called Type I, II and III lensed signals. They represent the
minimum, saddle-point and maximum solutions, respectively.
Type II images are Hilbert transform of the unlensed wave-
form, while Type I and Type III images are scaled versions
of it. Type III images differ from Type I only by their sign.
In the case of LIGO, Type II images are prime candidates for
detection given their similarity to the original waveform and
consequential high SNR. This is because we assume geomet-
ric optics, in which waveform distortion only occurs when the
image originates from a saddle-point solution[10].

However, the point-mass lens model fails in accounting for
the mass distribution of the lensing galaxy. To approximate
this better, we can instead employ the Singular Isothermal
Sphere (SIS) model. It’s best in modeling early-type galax-
ies, enabling us to approximate their surface density using the
equation

Σ(x) =
σ2
v

2G|θ|
=

σ2
v

2GxθE
. (16)

Here, σv is the one-dimensional velocity dispersion of the
lens[11].

Identifying Triggers

When searching for transient gravitational waves, we must
account for the various sources of noise that contribute to our
measurements. Thus, the output data from the detectors, d(t),
is a combination of both noise, n(t), and gravitational wave
signal, h(t), such that

d(t) = n(t) + h(t). (17)

There are various types of noise affecting our data, includ-
ing environmental noise (earthquakes, human activity, etc.)
and thermal noise (the non-zero temperature of the interfer-
ometer). Because noise is a random process, we make the
assumption that it is Gaussian and stationary to better approx-
imate the power output for a given bandwidth of signal. We
obtain the energy of a time-function by integrating over the
square of the function’s magnitude, which we can relate back
to the frequency space using Parseval’s theorem. This shows∫ ∞

−∞
|m(t)|2dt =

∫ ∞

−∞
|m̃(f)|2df, (18)

where the tilde over the function represents its Fourier
transform and P = m(t). This states that the total energy
in the time domain is equivalent to the total energy in the fre-
quency domain, meaning both of these expressions are pro-
portional to the power at a given point. Furthermore, we
see that the equation on the LHS is the traditional interpre-
tation of energy in the time domain while the equation on the
RHS measures energy in the frequency domain. Applying this
concept to the noise within the data, we bound the integrals
to reflect LIGO’s observing time, T , and begin observing at
time t = T/2 so we still have a two-sided domain. Letting
(−T/2, T/2) in the time domain correspond to (−F, F ) in
the frequency domain, we see∫ T/2

−T/2

|n(t)|2dt =

∫ F

−F

|ñ(f)|2df. (19)

Because the quantity inside the integral reflects energy per
the respective variable of integration (i.e. J/s and J/Hz).
If we further divide the inside quantity on the RHS by the
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observing time, we obtain the average amount of energy pro-
duced by a given frequency during an observing run. For-
mally, this is called the double-sided power spectral density
(PSD) of the noise, where

Sn
double(f) =

|ñ(f)|2

T
. (20)

Recall that this quantity originated from a double-sided inte-
gral covering both negative and positive frequencies. We are
only concerned with measuring the positive frequencies, so
we restrict the domain from 0 to F to obtain the single-singed
PSD. Because we’re only shifting the bounds, Parseval’s the-
orem still holds, also implying that these integrals must be
equal. Since the original function is even, by restricting the
bounds to be positive, we halve the original value. Thus, to
keep it unchanged we must double the value of the new inte-
gral. Pushing this constant multiple inside the function itself,
then

Sn
single(f) = 2Sn

double(f) =
2|ñ(f)|2

T
. (21)

We can also define the PSD using the ensemble average
⟨|ñ(f)|2⟩, which averages of all possible sets of waveforms
creating noise at a given moment. This gives us an approxima-
tion of power output per bandwidth of signal, independent of
time. To do this, we need to force the bandwidth to zero while
still measuring non-zero power, so we must first normalize the
data, sum the Fourier transforms of these infinitesimally small
intervals, and finally take their average. If we plot this, we get
a continuous curve representing the power distribution over
all possible frequencies.

Nonetheless, this method isn’t sufficient in measuring the
PSD because n(t) ̸= 0 as t → ±∞, which is a condition
of the Fourier transform. However, we work around this by
considering the auto-correlation of the noise. This function
reveals any patterns in the data by correlating the same noise
function at two different times, t and t + τ . As τ → ±∞,
making the cross-correlated data approach 0 as required. We
define the auto-correlated function of the noise as

R(τ) = ⟨n(t+ τ)n(t)⟩ =
∫ ∞

−∞
n(t)n(t+ τ)dt. (22)

Taking the Fourier transform of this, the single-sided noise
PSD is now given by

Sn(f) = 2

∫ ∞

−∞
R(τ)e−i2fπτdτ. (23)

Essentially, this function helps us approximate the power dis-
tribution while accounting for frequency variation. We use
the auto-correlation function to determine the degree of corre-
lation for a specific waveform within our time-series data (i.e.
detecting repetitions and making the noise more predictable),
then apply the Fourier transform to map this relationship into
the frequency space. Also notice that when τ = 0, the orig-
inal time-series signal is squared, thus maximizing the auto-
correlation function and the PSD. Additionally, because noise

is real, we can say

ñ(−f) =

∫ ∞

−∞
n(t)e−i2π(−f)tdt = ñ∗(f), (24)

where ñ∗(f) represents the complex conjugate of the Fourier
transform. Using this, we can further derive that

⟨ñ(f1)ñ(f2)⟩ =
1

2
Sn(f1)δ(f1 − f2), (25)

where δ represents the Dirac delta function. When the noise
is non-Gaussian, these equations no longer hold true. We call
these glitches and, depending on their shape, they can be con-
fused for potential gravitational waves.
Now that we’ve characterized noise, we can focus on search-
ing for potential gravitational wave signal, h(t), within the
data. Because potential gravitational wave signals get buried
underneath noise due to the incredibly small amplitude, we
use various techniques of matched filtering. This allows us to
measure the data using the signal-to-noise ratio (SNR), which
is defined as

ρ = S/N, (26)

where S =
∫
h̃(f)P̃ ∗(f)df and N2 = [⟨ŝ2⟩ − ⟨ŝ⟩2]h(t)=0. N

represents the root mean square value of the signal when there
is no gravitational wave signal. P (t) is the filter function, and
P̃ ∗(f) is the complex conjugate of its Fourier transform. We
can maximize the SNR, ρ, by choosing P (t) such that

K̃(f) = C
h̃(f)

Sn(f)
. (27)

The overall SNR is also dependent on the number of detectors.
This net value is given by

ρ2net =
∑
i

ρ2i . (28)

Because the strains of gravitational waveforms are inversely
proportional to their effective distance Deff , the optimal SNR
is also inversely proportional to the effective distance. That is,

ρopt =
1

Deff
. (29)

Currently, detector sensitivity registers events with an ρ > 4.
One matched filtering pipeline used by LIGO is the gstLAL

search pipeline, which essentially analyzes the data using fil-
ters pulled from a template bank and returns any potential
matches as a trigger. After this, we use other methods to deter-
mine the statistical significance of the trigger, which gives the
likelihood of it being an actual gravitational wave. Before we
can run the data through the search pipeline, we must whiten
it so the variance in amplitude is 1. If the amplitude of the
data is higher than the variance (to a degree chosen by us), the
pipeline disregards measurements in the ±0.25s range, basi-
cally setting that interval’s amplitude to 0. This process is
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called gating, and it’s important we choose this degree so we
minimize noise error specifically from glitches while not over-
looking any potential GWs. We then perform the single-value-
decomposition (SVD) to reduce the waveform templates into
a set of basic vectors. After this, we decompose the template
bank so only the necessary waveforms are kept, which reduces
the computational time. To do this, we use each template’s
parameters to determine their time-frequency evolution, then
split the template bank into partially-overlapping split-banks
according to this. We then clip any overlapping regions so
only distinct waveform templates remain, and again whiten
the data. We also divide the split-banks into time-slices and
set each template to have the same number of sample points.
This is because lower frequencies have more templates and are
likewise susceptible to oversampling. Finally, SVD is again
performed, now returning the most important basis waveform.

Next, the gstLAL maximizes the SNR by chopping the raw
SNR time series data into 1s intervals. If the peak of a given
interval passes above a certain threshold, it’s marked as a trig-
ger and the template parameters, trigger time, SNR and co-
alescence phase are recorded. These triggers then get sorted
into a θ̄ bin. As mentioned, glitches can easily mimic gravi-
tational waves and can thus be registered as triggers. We de-
termine the statistical significance of the trigger using various
methods, one being the consistency check (also called the chi-
square test). With this, we can use the data from a single de-
tector to compare the actual time series to the expected time
series. We do this using the two out of phase yet identical
matched-filter outputs such that

zj(t) = x2j(t) + ix2j+1(t), (30)

where 0 ≤ j ≤ NT − 1. We let t = 0 be the peak time tp and
compare this to the complex autocorrelation function

Rj(t) =

∫
|h̃2j(f)|2 + |h̃2j+1(f)|2

Sn(|f |)
e2πift. (31)

At tp, this is set to equal 0.5, which means Rj(0) = 1. We
then determine the signal consistency text value χ2 by nor-
malizing the integral

χ2
j (t) =

∫ δt

−δt
|zj(t)− zj(0)Rj(t)|2dt∫ δt

−δt
(2− 2|Rj(t)|2)dt

. (32)

A stronger method of determining statistical significance
is the coincidence criterion. Because there are multiple de-
tectors with fixed locations, we can determine the time-frame
in which the detectors should register the same gravitational
wave signal. For example, because the LIGO Hanford and
LIGO Livingston detectors are 0.01 light-seconds apart, their
respective triggers for the same event should also occur within
this general time-frame. However, because that time inter-
val is specific to light, we increase the coincident time in-
terval by a small amount to account for uncertainties in the
GW’s behavior. The gstLAL also enforces coincident trig-
gers to have the same parameters, and together this informa-
tion is used in determining the event’s statistical significance.

Now non-coincident triggers are marked as noise, which helps
us better understand the probability density of each detector’s
noise background. From this, we determine the likelihood of
the signal being a gravitational wave. The p-value represents
the probability of noise producing the specific signal with an
equal or larger ranking statistic, measured as lnL for noise
and lnL∗ for the specific trigger. Using these, we compute
the False-Alarm Probability (FAP) such that

P (lnL ≥ lnL∗|noise) =
∫ ∞

lnL∗
P (lnL|noise)d lnL. (33)

We can also calculate the False-Alarm-Rate to determine the
event’s significance. This is similar to the FAP except it ex-
presses how often the noise would produce a trigger with the
necessary ranking statistic. We now have to consider the ob-
serving time T , and the total number of observed candidates,
N , where

FAR =
N × FAP

T
. (34)

The gstLAL then ranks candidate events according to these
ranking statistics. A smaller FAR means a lower likelihood
of the candidate being produced by noise, thus increasing the
likelihood of it being a real gravitational wave signal. Candi-
dates are selected for further analysis if they go above a thresh-
old decided by the analyst. This gives us a ranked list of pos-
sible candidates as well as the source parameters of the tem-
plates that identified them. However, source parameters can
differ widely from the template parameters, so this list only
serves in identifying candidates worthy of follow up analy-
sis, not as a method of determining the actual source param-
eters. To do this, we obtain the posterior samples and derive
the posterior probability distribution using Bayesian param-
eter estimation, which gives a better estimate of the source
parameters[12].

The gstLAL search pipeline was established in 2008 and
primarily contains elements of Python and C programming.
Given LIGO’s sensitivity to frequencies within the audible
range, or approximately 10 Hz to 10 kHz, the gstLAL is based
on an audio and video processing platform called Gstreamer.
Gstreamer also operates as a pipeline, which allows us to sort
and process large amounts of data. The gstLAL bases it’s
pipeline on this, including modifications necessary to analyze
gravitational wave data.

Since it’s origin, different packages of have been introduced
depending on search type. If we are searching for compact
binary coalescence events, we use the gstLAL-Inspiral pack-
age, which will be the package used for the duration of this
project. There is also the gstLAL-Burst package for searching
for gravitational wave bursts, the gstLAL-Calibration package
for LIGO’s strain data calibration, and the main gstLAL pack-
age which contains the core components for the various pack-
ages’ codes. The gstLAL-ugly package is used for software
development and, upon completion, code here gets transferred
to its intended package.
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The gstLAL-Inspiral was created with the intention of one
day tracking real-time mergers producing electromagnetic ra-
diation with telescopes. This is possible given the long in-
spiral phase of binary neutron star events, which corresponds
to an increased time period of the signal observed by the de-
tector. As the detector’s sensitivity increases, the time frame
between the initial trigger and the actual merger increases

When searching for CBC events, the gstLAL code operates
using two different modes. The ”low latency” mode searches
real-time data for triggers from a binary merger, analyzing the
data within a tenth of a second. The ”offline” search priori-
tizes detail over return time, making use of more elegant code
[13].

Searching for Lensed Pairs

Although this method is sufficient in detecting gravitational
waves, it may fail in detecting sub-threshold lensed counter-
parts because they have low ranking statistics and are more
easily buried in the noise background. However we can
remedy this using the gstLAL-based TargetEd Sub-Threshold
Lensing SeArch pipeline (TESLA). With TESLA, we take
the known information about the super-threshold candidate
and reduce the template bank so only templates with reason-
able source parameters remain. Because the source param-
eter estimation of the super-threshold GW gives us a prob-
ability distribution rather than a fixed value, we also obtain
the proper parameter estimation for the sub-threshold event
using the Bayesian posterior probability distribution. This
helps in reducing background noise while keeping the rele-
vant template waveforms. If the noise is Gaussian and sta-
tionary, keeping only the space enclosed by the 90% credible
region is sufficient in covering the sub-threshold counterparts.
Yet most noise is non-Gaussian and a leading cause of false
alarms, so this region is insufficient in searching for the tar-
geted GW. Thus, research aims at decreasing the amount of
templates picking up unwanted background noise while keep-
ing the templates necessary in picking up the desired fore-
ground information, i.e. the most probable template parame-
ters.

This leaves us to decide what regions of the parameter space
should be targeted, which is done by injecting samples of
the sub-threshold signal and keeping only the templates that
recover them using the gstLAL. To register as a trigger, it
still requires an ρ > 4 so we tweak one of the original pa-
rameters. Because the source’s effective distance Deff is in-
versely proportional to the SNR, we can “demagnify” the con-
firmed waveform SNRs by increasing the measured effective
distance. During an injection period, there is one injection
with the original SNR and 9 weaker injections to describe the
SNRs at the increased effective distances. The weaker in-
jections are determined so the weakest injection registers an
ρ ≥ 4 in all detectors. We then inject the signals into our
data and run them through the gstLAL with a full template
bank, keeping templates capable of recovering the injections

and adding them to the reduced template bank. The results
are then analyzed so templates that significantly deviate from
our original source parameter’s posterior space are discarded.
We then use this reduced template bank to search for potential
sub-threshold lensed counterparts within all possible data. Af-
ter this, we create a priority ranking list using the FAR ranking
statistics from the confirmed gravitational wave. As with tra-
ditional analysis, this gives the likelihood of the signal being
astrophysical, not of it being a lensed counterpart. Overall, the
TESLA method maximizes the efficiency of the search by pro-
ducing a nearly optimal template bank and reduces the noise
background by accounting for glitches. This process is again
described in figure 5 below [12].

Figure 5. TESLA flowchart for a given target event

A test performed on the two LIGO detectors and the
VIRGO detector using data from GW220112a showed that
the TESLA template bank is the most effective in searching
for sub-threshold counterparts. When compared to a single
template bank containing the posterior samples from the target
event with maximum probability, a PE template bank contain-
ing templates in the posterior probability distribution’s 90%
credible region and a template bank selected at random, the
TESLA bank found +9.26% more injections than the general
search. In comparison, the single, PE and random template
bank missed more injections than the general search, having
found percent changes of −40.0%, −80.3% and −77.5% re-
spectively. Because the PE template bank only considers noise
for the super-threshold event, it’s more likely to miss the sub-
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threshold event due to the time delay. The TESLA template
bank takes into account the signal sub-space of the confirmed
event and glitches, making it more likely to recover the lensed
counterparts[12].

OBJECTIVES

The overall objective of this project is incorporating relative
time delay and magnification distributions predicted by lens
models into ranking possible sub-threshold, strongly-lensed
candidates. Because the lens model calculations depend on
multiple parameters of the lens system, such as lens mass and
source distance, the search pipelines are most optimal when
these various models are accounted for. This will provide us
with ranking statistics based on the type of lens model used.
The first step in this project is developing a toy lens model
and running it through simulations to obtain the relative time
delay and magnification values for varying parameter configu-
rations. We then incorporate this information into the TESLA
search pipeline by modifying the likelihood calculations in the
gstLAL code. To determine the performance of these modifi-
cations, we will run a final simulation campaign. This method
will improve the efficiency and effectiveness of the search if
we see an increase in the number of astrophysical events reg-
istered by the detectors.

PROGRESS

In order to effectively run the gstLAL code, we first access
LIGO’s computer cluster using a Secure Server key. Through
this, we submit the large-scale jobs needed to search for gravi-
tational waves and monitor their progress. The gstLAL search
pipeline offers various graphical interpretations of the signal
within the detector, including closed and open box methods of
charting the log likelihood of the noise and signal respectively.
As mentioned, the log likelihood is defined as the ratio be-
tween the gravitational wave likelihood and noise likelihood,
or

lnL =
P(O⃗, D⃗H , ρ⃗, X⃗eff , [∆t⃗,∆ϕ⃗]|signal)

P(O⃗, D⃗H , ρ⃗, X⃗eff , [∆t⃗,∆ϕ⃗]|noise)
× P(⃗θ|signal)

P(⃗θ|noise)
(35)

O⃗ describes the participating detectors, D⃗H describes the
horizon distances for each detector (or their maximum sen-
sitivity), ρ⃗ describes the matched-filter SNR and X⃗eff de-
scribes the auto-correlation based signal consistency test val-
ues. When the event in coincident, or occurs in multiple de-
tectors, we also consider the time delay ∆t and the phase
delay ∆ϕ⃗ between the detections. The ratio of P(θ⃗|signal)
and P(θ⃗|noise) represents how likely the template parameters
are to model the trigger. As this value increases, the given
template parameters are more likely to represent a signal than
noise. [12] These individual probabilities are determined us-

ing Bayes theorem, where

P(hypothesis—data) =
L(data|hypothesis)P(hypothesis)

E(data)
.

(36)
The final result is called the posterior, which is the probability
used in the ratio for the log likelihood. We simply adjust the
hypothesis to match whether we believe the data is signal or
noise. L(data—hypothesis) is the likelihood of seeing the data
given the hypothesis, P(hypothesis) is the prior, or our initial
belief, and E(data) is the evidence about our model. Unless
working on model selection, the evidence is used only as a
normalization constant such that

E(data) =
∫ ∞

−∞
L(data—hypothesis)P(hypothesis). (37)

This means the area under the curve of the probability distri-
bution function always equals 1. Adding additional parame-
ters to the hypothesis simply increases the number of products
within the posterior calculation.

In analysis, we use the closed box method the compare the
log likelihoods of the expected noise to the observed noise. If
there is a trigger, the signal is first subtracted from this noise
background so we may observe the noise behavior indepen-
dently. We then compare the log likelihood of the full signal
(including both noise and trigger) to the expected noise curve
in the open box summary page, wherein we see the deviation
of a potential GW signal. For example, while searching data
for a trigger during O1, the closed-box summary is shown in
the figure below.

Figure 6. Event Count vs. Ranking Statistic Threshold for O1
(Closed Box)

We see that the observed noise follows the expected noise
curve, within a small degree error. Looking at the open-box
plot containing the noise and trigger below, we see that a sin-
gle event deviates significantly from this.
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Figure 7. Event Count vs. Ranking Statistic Threshold for O1 (Open
Box)

This event is in fact GW150914. Understanding the noise
behavior alone helps confirm the veracity of this trigger, show-
ing that signal detectable outside of the event follows our ex-
pectations [14]. Our goal is lowering this noise curve during
the targeted search for lensed pairs so the subthreshold coun-
terpart may be identified.

In modifying the likelihood portion of the code, we com-
pare the probabilities of the signal being lensed versus un-
lensed rather than being a signal versus noise. Thus, the new
log likelihood is defined to be

ln(L) = P(t, µ|lensed)
P(t, µ|not lensed)

× P(θ⃗|lensed)

P(θ⃗|not lensed)
.

(38)

Here, t represents the time delay of the potentially lensed
counterpart, or the time between its occurrence and the ini-
tial detection of the super-threshold event. Similarly, µ repre-
sents the magnification effects that occur because of the path
difference.

WORKING SCHEDULE

1. Week 1: June 21 - June 23

(a) Prepare computer with relevant software.

2. Week 2: June 26-June 30

(a) Become familiar with the gstLAL search pipeline.

3. Week 3: July 3 - July 7

(a) Learn how to access LIGO’s computer cluster.

(b) Run general searches in the gstLAL.

(c) Prepare interim report 1.
4. Week 4: July 10 - July 14

(a) Visit detector site.

(b) Submit interim report 1.

(c) Become familiar with portions of code set to be
modified.

5. Week 5: July 17 - July 21

(a) Modify likelihood calculations in gstLAL.

6. Week 6: July 24 - July 28

(a) Continue modifying gstLAL code.

(b) Prepare interim report 2 and abstract.

7. Week 7: July 31 - August 4

(a) Prepare toy model.

(b) Submit interim report 2.

(c) Submit abstract.

8. Week 8: August 7 - August 11

(a) Run final simulation campaign.

9. Week 9: August 14 - August 18

(a) Determine overall efficiency of the project.

(b) Prepare final presentation.

10. Week 10: August 21 - August 25

(a) Final Presentation

11. Week 10+: September 4

(a) Deadline for submitting final report.
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