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Data collected by gravitational wave (GW) interferometers such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) is permeated by noise as a result of environmental inter-
ference. Parameter estimation pipelines such as Bilby used to analyse LIGO data employs Bayesian
inference, which assumes that the noise in GW data is Gaussian and stationary: an assumption
contradicted by the nature of non-Gaussian transient noise “glitches” prevalent within the data.
We have constructed a mathematical model that emulates the waveform of fast scattering glitches,
which was tested via Bilby to determine the efficacy of glitch mitigation under the basis of the
model. The implementation of this model will facilitate the efficient subtraction of real fast scatter-
ing glitch instances from GW strain data, allowing for improved analysis and signal detection for

future observing runs.

I. INTRODUCTION

The Laser Interferometer Gravitational-wave Observa-
tory (LIGO) is an observatory designed to detect gravita-
tional waves (GWs) via the utilisation of two Fabry-Perot
interferometer arms. Within the detector is a beam split-
ter which sends a laser through each arm, allowing the
laser to cycle and rejoin to be analysed by a photodetec-
tor. When GWs pass through a detector, each arm ex-
periences a slight displacement which creates instances
of constructive or destructive interference from the re-
combined beam, thereby inducing a phase shift which is
then converted into a measurable signal [1]. A high sen-
sitivity is required for all GW detectors to receive data
from distant sources such as compact binary coalescences
(CBCs), which consequently hinders data analysis by also
increasing the prevalence of persistent and short duration
transient noise “glitches” produced by various sources of
environmental interference or electronic malfunction [I-

3].

One form of glitch known as scattered light glitches
are the result of beam segments diverging from the main
beam path and reflecting from objects of a conflicting
relative velocity within the interferometer, which later
rejoin the main beam and produce an additional phase
shift [3]. Scattered light glitches present two main com-
plication in analysis. One such impediment is that
glitch instances may trigger false positives in GW search
pipelines. The second and more common difficulty is that
glitches may overlap on top of an existing signal, present-
ing the largest hindrance to analysis efforts. Our focus
is to mitigate instances of fast scattering glitches, a form
of scattering glitch which occurs as a result of increased
ground activity in the anthropogenic band (1—5 Hz) and
microseism band (0.1 — 0.3 Hz). Each of these sources
affect the detector’s sensitivity in the frequency band be-
tween 10 and 50 Hz [1]. Figure 1 provides an example
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FIG. 1. A spectrogram of fast scattering triggers generated
using the Q-transform. Fast scattering glitches occur as mul-
tiple sub-arches organised in a shape akin to a larger arch.
Image reproduced from [1].

of the short duration noise bursts characteristic of fast
scattering glitches.

The process of removing noise and glitches from GW
strain data has been a persistent effort in order to
improve detector sensitivity. Furthermore, removing
glitches from data improves the accuracy of CBC param-
eter estimation pipelines which analyse raw strain data
collected by detectors to infer astrophysical properties
that characterise GW sources [3]. One such pipeline is
Bilby, a Python code which utilises Bayesian inference in
order to perform accurate parameter estimations [4].

Bayesian inference incorporates Bayes’ theorem to pro-
duce the posterior probability distribution of GW source
parameters by incorporating the prior distribution of
these source parameters with a model hypothesis. The
posterior probability may be computed using Bayes’ the-
orem with data d and source parameters 0 [2, 5]:
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where .£(d|0, .#) is the likelihood, 7 (6|.#) is the prior
probability, and Z(d|.#) is the model evidence, each
given a model .Z.

Parameter estimation pipelines such as Bilby assume
GW noise data to be stationary and Gaussian [3]. The
likelihood for transient behaviours present in GW strain
data is thus expressed using the following Gaussian noise
likelihood .Z, with a data value di at a frequency bin
index k [2, 4]:
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where oy, is the amplitude spectral density for the noise at
a given frequency bin and u(6) is the waveform in that
frequency bin. The non-Gaussianity of transient glitches
contradicts this assumption, further demonstrating the
importance of producing a means to remove these triggers
from GW data.

II. OBJECTIVE

We have constructed a model which provides a base-
line to identify fast scattering glitches from GW data and
mitigate these instances for improved analysis. Because
the model characterises long duration scattering glitches,
we performed model testing through Bilby. Bilby pro-
vides a more reliable method of both the subtraction and
marginalisation of long duration glitches as opposed to
other Bayesian inference algorithms such as BayesWave,
which are more proficient in subtracting short duration
glitches. Modelled inference performed by such algo-
rithms provides a more robust probe of glitch morphol-
ogy, incorporating information on the nature of these
glitches to assess the presence of unseen sub-arches for
the case of slow scattering glitches and additional arches
within fast scattering glitch clusters [2]. The construction
of this model allows us to emulate the behaviour and con-
ditions of triggers produced by fast scattering glitches by
inferring their parameters and evaluating the likelihood
that a particular set of configurations may approximate
a fast scattering glitch as seen in GW strain data.

III. PROGRESS
A. Preliminary Work

The first few weeks of the program were devoted solely
to training and attaining a better understanding of GWs,
the LIGO detector, and the various forms of noise that
permeate GW source data. My training began by un-
dergoing a tutorial to familiarise myself with the Python
coding procedures involved in performing computations
associated with an inspiral binary system of given masses,
including the orbital separation of the two objects, the
orbital period and velocity associated with this distance,

as well as the orbital frequency and the corresponding
GW frequency. From these values, I calculated and plot-
ted the rate of energy loss and the GW strain consistent
with this theoretical binary system. Additionally, I at-
tended a two-day GW Open Data Workshop in which I
learned how to create a spectrogram to display the time
and frequency information for a GW signal produced via
the Q-transform, as well as how to plot a LIGO noise
curve and the various ways noise may obscure a true GW
signal. In particular, I also learned about how parameter
estimation is performed given a GW waveform, a lecture
which I found to be particularly enlightening for the pur-
poses of my project. The skills and knowledge I have
attained thus far will be essential when working towards
our objective of constructing a fast scattering waveform
model which may be used as a means of glitch subtraction
from true GW data.

1. Motiwwation

In order to move forward in this project, it is necessary
to possess a thorough understanding of the construction
of the LIGO detector and the sources of the noise asso-
ciated with GW data, as well as how noise may obscure
a signal. Because scattered light from test mass mirrors
within the LIGO detectors reflects from surfaces of con-
flicting relative motion and rejoin the main beam path,
fast scattering glitches are a persistent issue within GW
strain data and often conceal true signals. Addition-
ally, fast scattering glitches persist as multiple driving
frequencies interacting with one another. As our objec-
tive for this project is to use a mathematical model to
reliably mitigate fast scattering glitch instances, it is thus
necessary to understand the sources associated with the
driving frequencies that compose fast scattering glitches
in order to properly consider each within the model.

The tutorial and workshop series were an imperative
step to become familiar with the relevant Python syntax
in order to define and use a waveform. Figures 2 and 3 are
an example waveform and corresponding spectrogram,
respectively, generated for practice during the workshop
series.
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FIG. 2. The waveform of an example CBC signal produced
during the GW Open Data Workshop series.
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FIG. 3. The spectrogram of an example CBC signal generated
during the GW Open Data Workshop series corresponding to
Figure 2.

B. Methods
1. Model Construction

In constructing a mathematical model for a generic
fast scattering glitch waveform, we began by following
the form of the undermentioned equation that describes
the excess strain noise h(t) related to the motion of the
surface z(t) produced by scattered light of wavelength A
over time ¢ [2]:

h(t) = Asin [4;95(75) + ¢] , (3)

where A is the amplitude of the noise produced by the
glitch with a phase shift ¢.

Assuming the movement of the relevant surface as a
harmonic oscillator, its motion may be presented as such
with the incorporation of the two driving frequencies f;
and fo, the two of which interact constructively and
destructively to generate fast scattering glitches within
data:

x(t) = Aysin(2w f1t) + Aasin(2w fat), (4)

where A1 and As are the respective amplitudes associated
with the two driving frequencies.

Incorporating the above equation into Equation 3, we
thus arrive at our model for a fast scattering glitch:

h(t) = Asin|Aisin(2m fit) + Agsin(27 fot) + ¢|.  (5)

2. Model Testing: Spectrogram Tests

Testing the validity of the model began by determining
predictions for each driving frequency and their associ-
ated amplitudes by incorporating the following relation

between the wavelength of the scattered light beam A, its
frequency f, and velocity of propagation v(t):

(6)

We thus determine the velocity associated with the mo-
tion from Equation 4, and by simplifying for the case
of the maximum frequency fy,q, where we may assume
cos(2mft) = 1:

Alfl + A2f2 = fmaa:' (7)
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FIG. 4. A spectrogram produced by the mathematically de-
rived fast scattering model with parameters A = 3 x 10722,
fi=0.2, fa=5,d1 =15, ds = 35, and ¢ = 0, where d; = %
and do = %.

Because fast scattering glitches affect the detector sen-
sitivity from 10— 50 Hz, we assume that f,,.. = 50 when
determining the possible values of each parameter asso-
ciated with Equation 7. Figure 4 provides the resulting
spectrogram for one of the possible parameter combina-
tions of our fast scattering model, reproducing the long
duration, short-burst arches characteristic of traditional
fast scattering glitch cases.

8. Model Testing: Bilby

The next step in testing the efficacy of our model in
fast scattering glitch emulation and mitigation involved
determining the accuracy at which various given parame-
ter injections align with the posterior results of each case.
This was performed by running the model with our cho-
sen values through Bilby given the logical priors for each
parameter. Figure 5 displays a corner plot associated
with a given set of injection parameters. The posterior
probability distributions for each possible value between
each parameter are shown with the specified injection
values on each contour as a single point.

Further testing of the validity of the glitch model in-
volved generating a spectrogram from the injections on
the basis of the model produced by Bilby. The resulting



ws? w 2 j !
»Qup
. 00088

1e-22 On

(:: %\\ s%\ “L

& I L‘ H
&1
\hn“
. 3479183
i
< ° do
*b AN
| IR I
——

dy

[

FIG. 5. A corner plot produced from Bilby given a set of
injection parameters in association with those specified for
Figure 4. The parameters di1 and d2 describe the amplitudes
associated with the driving frequencies f1 and fa.

spectrogram was found to fall in close agreement with
the spectrogram produced directly from the mathemati-
cal model, as shown in Figure 6.
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FIG. 6. The resulting spectrogram generated from Bilby given
the previously specified set of injection parameters.

4. Model Testing: P-P Tests

The final validity test which we have performed thus
far consisted of P-P testing, or parameter-parameter test-
ing, to ensure unbiased posterior results given a set of
samples taken from the prior. Figure 7 displays the asso-
ciated P-P plot for a sample size of N = 100. The events
lying within each confidence interval tend to closely fol-
low a linear trend, suggesting that the results are indeed
unbiased.
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FIG. 7. The P-P plot produced for the model with a sample
size of N = 100.

C. Next Steps

For the remainder of the summer, we intend to test our
waveform model on real fast scattering glitch instances
saturating GW strain data in order to determine its ca-
pability in glitch emulation and mitigation. If successful,
such efforts will provide a reliable method to reduce glitch
prevalence in data, thereby improving efforts to analyse
GW source data and allow for greater detector sensitivity
for future observing runs. Furthermore, if time allows, we
intend to perform joint ”CBC+glitch” injection testing
to determine the model’s success in uncovering obscured
CBC strain data. The remainder of the summer will be
spent preparing the final presentation.
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