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Data collected by gravitational wave (GW) interferometers such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) is permeated by noise as a result of environmental interfer-
ence. Parameter estimation pipelines such as Bilby used to analyse LIGO data employs Bayesian
inference, which assumes that the noise in GW data is Gaussian and stationary: an assumption
contradicted by the nature of non-Gaussian transient noise “glitches” prevalent within the data.
We have constructed a mathematical model that emulates the waveform of fast scattering glitches,
which we tested via Bilby to determine the efficacy of glitch mitigation under the basis of the
model. The implementation of this model will facilitate the efficient subtraction of real fast scatter-
ing glitch instances from GW strain data, allowing for improved analysis and signal detection for
future observing runs.

I. INTRODUCTION

The Laser Interferometer Gravitational-wave Observa-
tory (LIGO) is an observatory designed to detect gravita-
tional waves (GWs) via the use of two separate Michelson
interferometer detectors. Within each detector is a beam
splitter which sends a laser through each arm, allowing
the split beam on either side to cycle in a Fabry-Perot
cavity and rejoin the main beam to be analysed by a
photodetector [1]. When GWs pass through a detector,
each arm experiences a slight displacement which cre-
ates instances of constructive or destructive interference
from the recombined beam, thereby inducing a phase
shift which is then converted into a measurable signal
[2]. A high sensitivity is required for GW detectors to
receive data from distant sources such as compact binary
coalescences (CBCs). The characteristic LIGO strain, ly-
ing at 10−21 Hz−1/2, is easily overpowered by persistent
and short duration transient noise “glitches” produced
by various sources of environmental interference or elec-
tronic malfunction which rise above the Gaussian noise
floor [2–5].

One form of glitch, known as scattered light glitches,
arises when segments of the laser diverge from the main
beam path. These segments reflect off of objects with
non-zero relative velocities within the interferometer,
which later rejoin the main beam and produce an addi-
tional phase shift [4, 6]. Scattered light glitches introduce
two primary challenges in analysis. First, glitch instances
may trigger false positives in GW search pipelines. The
second and more frequent complication is that glitches
may overlap on top of an existing signal, posing the
largest hindrance to analysis efforts. Our focus is to mit-
igate instances of fast scattering glitches, a form of scat-
tering glitch which occurs as a result of increased ground
activity in the anthropogenic band (1 − 5 Hz) and mi-
croseism band (0.1− 0.3 Hz). The scattering mechanism

FIG. 1: A spectrogram of fast scattering triggers
generated using the Q-transform. Fast scattering

glitches are characterised by multiple peaks organised in
a formation resembling a broad arch. Image reproduced

from [2].

attributed to these sources couples into the differential
arm motion, or DARM, and affects the detector’s sensi-
tivity in the frequency band between 10 and 50 Hz [2].
Figure 1 provides an example of the short duration noise
bursts characteristic of fast scattering glitches.

Removing noise and glitches from GW strain data has
been a persistent effort by the GW scientific community
to improve detector sensitivity. It is not only necessary
to produce a reliable result, but it is also an imperative
step to improve the accuracy of CBC parameter estima-
tion pipelines which analyse raw strain data collected by
detectors to infer astrophysical properties that charac-
terise GW sources [4]. One such pipeline is Bilby, a
Python library which utilises Bayesian inference to per-
form accurate parameter estimations [7].

Bayesian inference incorporates Bayes’ theorem to pro-
duce the posterior probability distribution of GW source
parameters by incorporating the prior distribution of
these source parameters with a model hypothesis. The
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posterior probability may be computed using Bayes’ the-
orem with data d and source parameters θ given a model
hypothesis M [3, 8]:

p(θ|d,M ) =
L (d|θ,M )π(θ|M )

Z(d|M )
, (1)

where L (d|θ,M ) is the likelihood and π(θ|M ) is the
prior probability. The evidence Z(d|M ), a normalisation
constant, is described by

Z(d|M ) =

∫
p(θ|d,M )π(θ|M )dθ, (2)

which describes the success at which the hypothesis rep-
resents the data. Parameter estimation pipelines such as
Bilby assume GW noise data to be stationary and Gaus-
sian [4]. The likelihood for transient behaviours present
in GW strain data is thus expressed using the following
Gaussian noise likelihood L , with a data value dk at a
frequency bin index k [3, 7]:

lnL (d|θ) = −1

2

∑
k

{
[dk − µk(θ)]

2

σ2
k

+ ln (2πσ2
k)

}
, (3)

where σk is the amplitude spectral density for the noise at
a given frequency bin and µk(θ) is the waveform in that
frequency bin. The non-Gaussianity of transient glitches
contradicts this assumption, further demonstrating the
importance of producing a means to remove these triggers
from GW data.

II. OBJECTIVE

We have constructed a parametric model which pro-
vides a baseline to identify fast scattering glitches from
GW data and mitigate these instances for improved
analysis of CBC events. Parameterised models pro-
vide a more reliable method of both the subtraction
and marginalisation of long-duration glitches as opposed
to BayesWave [9, 10], which is more reliable for its
wavelet models and greater proficiency in subtracting
short-duration glitches. Parametric model inference, per-
formed primarily using Bilby, provides a more robust
probe of glitch morphology by leveraging data from the
entire segment duration to influence our inference of the
glitch morphology at specific time/frequency zones over-
lapping a CBC [3]. The construction of this model en-
ables us to simulate the characteristics and conditions of
fast scattering glitches. By inferring their parameters,
we can assess the likelihood that specific configurations
may approximate a fast scattering glitch observed in GW
strain data.

III. METHODS

A. Model Construction

In constructing a mathematical model for a generic
fast scattering glitch waveform, we began by following
the form of the undermentioned equation that describes
the excess strain noise h(t) related to the motion of the
surface x(t) produced by scattered light of wavelength λ
over time t [2–4, 6]:

h(t) = Ā sin

[
4π

λ
x(t) + ϕ

]
, (4)

where Ā is the amplitude of the noise produced by the
glitch with a phase shift ϕ.
Assuming the movement of the relevant surface as a

harmonic oscillator, its motion may be presented as such
with the incorporation of the two driving frequencies f1
and f2, the two of which interact with one another to
produce fast scattering glitches which are then seen in
GW strain data:

x(t) = A1 sin(2πf1t) +A2 sin(2πf2t), (5)

whereA1 andA2 are the respective amplitudes associated
with the two driving frequencies.
Incorporating the above equation into Equation 4, we

thus arrive at our model for a fast scattering glitch:

h(t) = Ā sin

[
A1 sin(2πf1t) +A2 sin(2πf2t) + ϕ

]
. (6)

B. Model Testing: Preliminaries

1. Spectrogram Predictions

Testing the validity of the model began by determining
general predictions for each driving frequency and their
associated amplitudes by incorporating the following re-
lation between the wavelength of the scattered light beam
λ, its frequency f , and velocity of propagation v(t) [3, 6]:

f =

∣∣∣∣2v(t)λ
∣∣∣∣. (7)

We thus determine the velocity associated with the mo-
tion from Equation 5, and by simplifying for the case of
the maximum frequency fmax where cos(2πft) = 1:

A1f1 +A2f2 = fmax. (8)

Because fast scattering glitches are commonly char-
acterised by a peak frequency of 50 Hz as seen in de-
tector data, we assume that fmax = 50 when deter-
mining the possible values of each parameter associated
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FIG. 2: A spectrogram produced by the mathematically
derived fast scattering model with parameters f1 = 0.2,
f2 = 5, d1 = 35, d2 = 15, and ϕ = 0, where d1 = A1

f1
and

d2 = A2

f2
.

with Equation 8. We defined a list of prior assumptions
for each parameter, drawn from uniform distributions:
the prior ranges for d1 and d2 were inferred based on
f1 ∼ U(0.1, 0.3) and f2 ∼ U(1, 5) via Equation 8, with
Ā ∼ U(10−23, 10−18) based on the characteristic LIGO
strain and ϕ ∼ U(0, 2π). Figure 2 provides the resulting
spectrogram for one of the possible parameter combina-
tions of our fast scattering model, reproducing the long-
duration, short-burst arches characteristic of traditional
fast scattering glitch cases.

2. Parameter Injections & Waveform Generator

The next step in testing the efficacy of our model in
fast scattering glitch emulation and mitigation involved
determining the accuracy at which various given parame-
ter injections align with the posterior results of each case.
This was performed by running an analysis of the model
with our chosen injection values through Bilby given the
logical priors for each parameter. The prior assumptions
include those of the ranges of the two driving frequencies
characteristic of fast scattering triggers as mentioned pre-
viously, the possible values of d1 and d2 given the driving
frequencies and fmax, the possible range of values asso-
ciated with ϕ, and the noise amplitude Ā.
Figure 3 displays a corner plot associated with a given

set of parameter injection values, shown as singular
points or lines overlaying a column or row of images. Cor-
ner plots are interpreted as follows: the outermost diag-
onal showcases one-dimensional histograms detailing the
distribution of each parameter’s values, while the lower
triangle displays two-dimensional joint histograms repre-
senting two-parameter slices within the parameter space.
Each distribution represents the a posteriori probability
of the parameter configuration given the data, including
the distribution for each parameter which, for this exam-
ple, manifested as Gaussian probability curves.

Further testing of the validity of the glitch model in-
volved generating a spectrogram from the injected pa-
rameter values into the model produced by Bilby’s wave-

FIG. 3: A corner plot produced from Bilby given a set
of injection parameters specified from Figure 2. The

parameters d1 and d2 describe the amplitudes
associated with the driving frequencies f1 and f2.

FIG. 4: The resulting spectrogram from the Bilby
waveform generator given the previously specified set of

injection parameters in Figures 2 and 3.

form generator. The shape and pattern of the result-
ing spectrogram fell in close agreement with the spectro-
gram produced directly from the mathematical model, as
shown in Figure 4.

3. P-P Testing

The final validity test which we performed consisted of
P-P testing, or parameter-parameter testing, to ensure
unbiased posterior results given a set of samples taken
from the prior. P-P plots compare the empirical cumu-
lative distribution function (CDF) versus the theoretical
CDF. In a P-P plot, an unbiased result in which the
data’s distribution matches the theoretical distribution



4

0.0 0.2 0.4 0.6 0.8 1.0
C.I.

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n o
f e

ve
nts

 in
 C

.I.
N=100, p-value=0.2474

A (0.572)
d1 (0.119)
d2 (0.951)

 (0.195)
f1 (0.298)
f2 (0.155)

FIG. 5: The P-P plot produced for the model with a
sample size of N = 100. The three shaded error regions
represent credible bands; the darkest shade signifies the

highest credibility, tapering off to lower levels of
credibility in lighter-shaded areas.

will manifest as a diagonal plot where 10% of the sam-
ples have CDF < 0.1, 20% have CDF < 0.2, and so
on. Bias, however, will manifest as a deviation from the
diagonal. Figure 5 displays the associated P-P plot for a
sample size of N = 100 simulated signals, where each pa-
rameter curve is shown to lie within the 3σ uncertainty.
According to our P-P plot, the events within each credi-
ble interval (CI) delineate a clear linear progression and
thereby suggest unbiased parameters.

C. Model Testing: Glitch Mitigation

The culmination of the findings detailed in Sections
III B 1, III B 2, and III B 3 demonstrated our model’s po-
tential in accurately depicting true fast scattering trig-
gers. We thus moved on to our next phase of model
testing, which was done on two different manifestations
of fast scattering events: hardware-injected triggers and
real triggers, the results of which are detailed in Sections
III C 1 and III C 3, respectively. The former was to deter-
mine our model’s efficiency in glitch emulation and mit-
igation for a simpler fast scattering structure case, while
we intended the latter to serve as a step up in difficulty
for more complex fast scattering structures.

1. Hardware-Injected Trigger Events

Hardware injections often serve to simulate GW signals
using repeated injections in order to calibrate the detec-
tors and to provide a test of parameter estimation anal-
yses in recovering signals from the data collected by the
detectors. Additionally, hardware injections may serve
to imitate non-Gaussian noise, including fast scattering

(a)

(b)

FIG. 6: The data spectrogram (6a) and its residual
spectrogram (6b) of a hardware-injected fast scattering
glitch administered at the Hanford site. In the residual,
the model effectively mitigated some frequency peaks

but amplified others.

triggers. Hardware injections are performed by physi-
cally displacing the test masses within the detector us-
ing an actuator in order to replicate the movements that
occur as a result of GW signals or environmental oscilla-
tions [11].

The spectrogram for the case of interest is given in
Figure 6a, in which a 2.6 Hz sine wave was injected in
the detector. We performed parameter estimation on the
hardware-injected event and recovered a posterior proba-
bility distribution, which then yielded the maximum like-
lihood values for each parameter. Presented in Figure 7 is
the resulting corner plot. As expected, we recovered the
known driving frequency f2 = 2.6 Hz, which indicated
that Bilby produced a favourable result in its parameter
estimation. Figure 6b displays the residual spectrogram
after our glitch mitigation efforts. It is evident that the
model’s success was limited: triggers at t = 0 s, t = 1.2
s, t = 1.4 s, and t = 2 s were removed, while triggers
from t = 0.2− 1 s and t = 1.6− 1.8 s persisted; in some
cases, they were amplified, which we attribute to possible
injection amplitude changes.
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FIG. 7: The corner plot providing the posterior
parameter distributions of the hardware-injected event.
Our posterior analysis accurately reflected a value of
f2 = 2.6 Hz characteristic of the shaker injection

applied at the LIGO Hanford detector.

2. Real Trigger Events: O3 Example

We adopted the fast scattering glitches seen in Figure
1 as provided by [2] from LIGO’s third observing run to
perform parameter estimation analyses on a fast scatter-
ing instance of a more complex structure.

In Figure 8, we provide a spectrogram which displays
a fast scattering glitch arch and its respective residual.
The results implied that the model was less effective in
mitigating the fast scattering triggers analysed: the resid-
ual, as opposed to any mitigation, instead indicates an
addition to data.

3. Real Trigger Events: GW190701

We tested our model’s mitigation capabilities on an
instance of fast scattering which persisted in the pres-
ence of a CBC merger, an event known as GW190701.
We performed the first investigation in our model’s abili-
ties to perform fast scattering mitigation in the presence
of GW190701 for a fast scattering arch that manifested
prior to the CBCmerger. Figure 9 displays the data spec-
trogram of the with its associated residual. This arch is
characterised by irregular peaks which persist at varying
time intervals. The asymmetry of this pattern hindered
our model’s effectiveness, a shortcoming evident from the
minimal mitigation portrayed in the residual.

Upon performing parameter estimation on the fast

(a)

(b)

FIG. 8: The spectrogram (8a) and its residual (8b) of a
fast scattering arch as seen from [2]. Contrary to glitch
mitigation efforts, the residual reveals newly introduced

fast scattering peaks.

scattering structure superimposed on the merger event,
our model demonstrated remarkable proficiency. It ef-
fectively replicated this structure, eliminating the of-
fending glitch as seen in Figure 10. This outcome not
only indicates our model’s potential in performing ro-
bust glitch mitigations but also showcases an enhance-
ment over mitigation efforts by Abbott et. al. (2021)
[12] with BayesWave, as illustrated in Figure 11.

IV. CONCLUSIONS

We constructed a parametric model for fast scatter-
ing glitches under the assumption that the motion of the
reflecting instrumentation inside the LIGO detectors ad-
heres to the behaviour of a simple harmonic oscillator.
After developing a reliable model, we performed a va-
riety of validity tests, including generating spectrogram
predictions to describe the general waveform of a fast
scattering glitch, performing parameter estimations with
injections, and P-P testing. After our model passed these
preliminary assessments, we graduated to parameter esti-
mations and mitigations of actual glitch occurrences seen
in GW strain data. This included a hardware-injected
trigger event and a naturally occurring fast scattering
event. We then executed the same analyses on a fast
scattering arch preceding GW190701 and another over-
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(a)

(b)

FIG. 9: The data spectrogram (9a) and its residual (9b)
of the fast scattering triggers existing before

GW190701. The residual spectrogram shows minimal
mitigation of individual triggers, marking the difficulty
our model encountered when attempting to replicate

intricate glitch structures.

lapping the merger.
Though our parametric model faced challenges in ac-

curately imitating the fast scattering cases in Sections
III C 1 and III C 2, we achieved notable progress with en-
hanced glitch mitigation for GW190701, detailed in Sec-
tion III C 3, surpassing previous efforts as performed in
Abbott. et. al. (2021) [12]. This outcome accentuates
the formidable potential of our parameterised model in
adeptly mitigating fast scattering glitches. To further
hone its performance, we are committed to refining the
model in future work. Our intended approach will in-
volve testing it against a broader array of fast scattering
instances in LIGO detector data, continuing to fine-tune
its parameters accordingly, and conducting parameter es-
timations on joint “CBC+glitch” examples. These objec-
tives pave the way towards our primary aim: enhancing
the analysis of GW events and bolstering signal detection
in forthcoming observing runs.
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