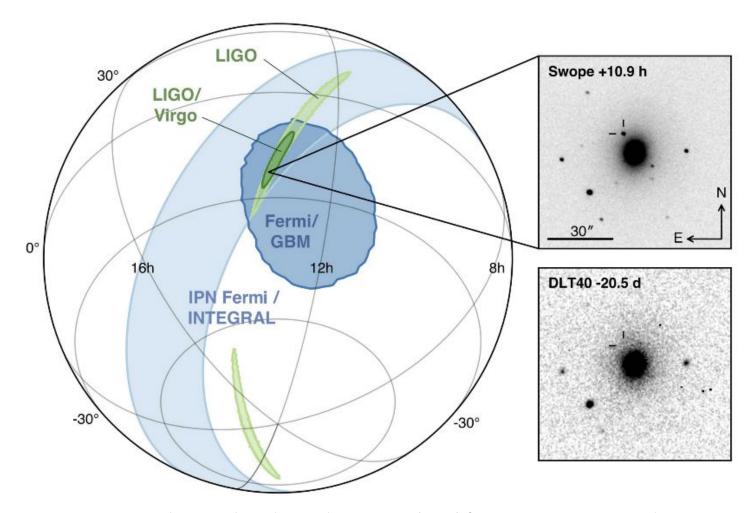
Inferring Gravitational Wave Source Properties with Machine Learning

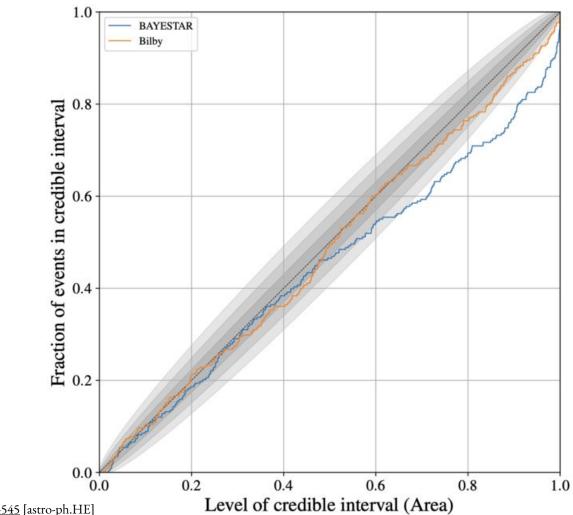
Jules Levanti & Ryan Magee

Presentation Navigator

- 1. Motivation: Current Sky Map Algorithms and Performance
 - 2. Main Project Goal and Techniques
- 3. Intermediate Pipeline Data Products: Singular Value Decomposition
- 4. Parameter Estimation: Simulation Based Inference and Convolutional Neural Networks
 - 5. Results and Conclusion



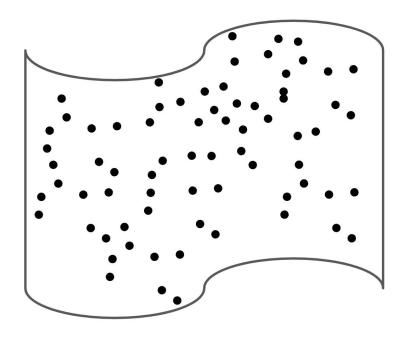
GW170817 - The Astrophysical Journal Letters 848: (59pp) from LSC, Virgo, Fermi, et al.

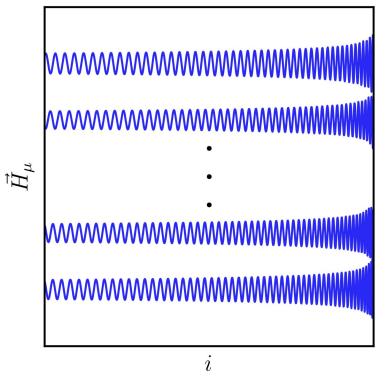


Find ways to produce skymaps <u>quickly</u> and <u>accurately</u> with two techniques:

1. Using intermediate pipeline data products

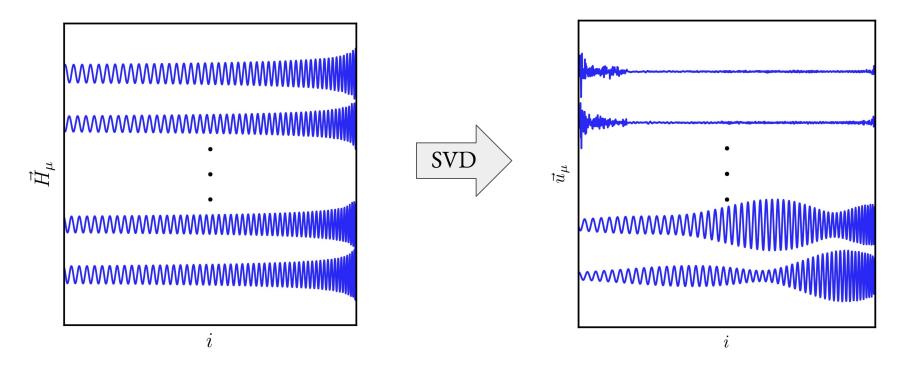
2. Implement machine learning techniques such as simulation based inference





6

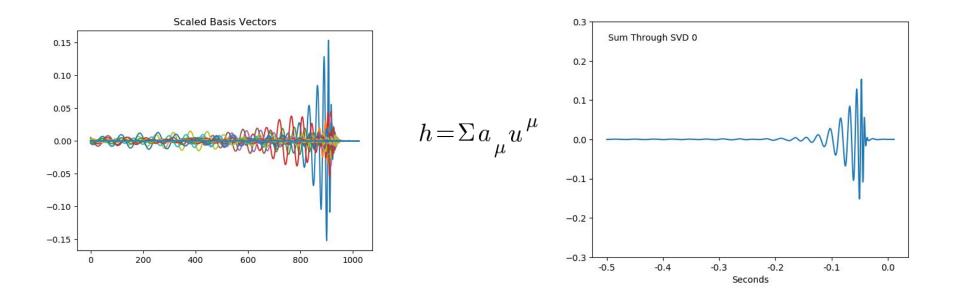
Singular Value Decomposition

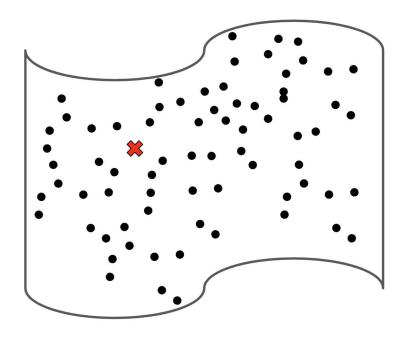


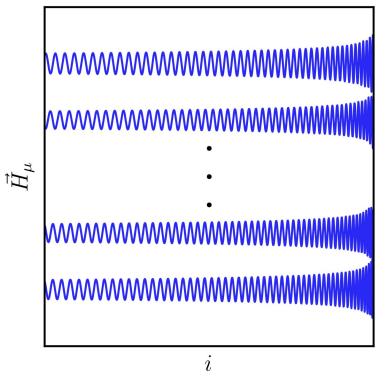
Magee, 2020

7

Singular Value Decomposition







9

<u>Template break-down into</u> <u>SVD basis vectors:</u>

$$h = \Sigma a_{\mu} u^{\mu}$$

 $\overline{\rho} = < h | d >$

<u>Template break-down into</u> <u>SVD basis vectors:</u>

$$h = \Sigma a_{\mu} u^{\mu}$$

 $\rho = \langle h | d \rangle$

<u>Template break-down into</u> <u>SVD basis vectors:</u>

 $h = \Sigma a_{\mu} u^{\mu}$

Sub *b*:

 $\rho = <\sum a_{\mu} u^{\mu} |d>$

 $\rho = \sum a_{\mu} < u^{\mu} | d >$

 $\rho = \langle h | d \rangle$

<u>Template break-down into</u> <u>SVD basis vectors:</u>

 $h = \Sigma a_{\mu} u^{\mu}$

Sub *b*: $\rho = <\sum a_{\mu} u^{\mu} |d>$

 $\rho = \sum a_{\mu} < u^{\mu} | d >$

SVD SNR:

 $Q = \langle u | d \rangle$

 $\rho = \langle h | d \rangle$

<u>Template break-down into</u> <u>SVD basis vectors:</u>

 $h = \Sigma a_{\mu} u^{\mu}$

Sub *b*: $\rho = <\sum a_{\mu} u^{\mu} |d>$

$\rho = \sum a_{\mu} < u^{\mu} | d >$

<u>SNR break-down into SVD</u> <u>SNRs:</u>

 $\rho = \sum a_{\mu}Q^{\mu}$

SVD SNR:

 $Q = \langle u | d \rangle$

 $\rho = \langle h | d \rangle$

<u>Template break-down into</u> <u>SVD basis vectors:</u>

 $h = \Sigma a_{\mu} u^{\mu}$

Sub *b*: $\rho = <\sum a_{\mu} u^{\mu} |d>$

 $\rho = \sum a_{\mu} < u^{\mu} | d >$

<u>SNR break-down into SVD</u> <u>SNRs:</u>

 $\rho = \sum \left[a_{\mu} Q^{\mu} \right]$

SVD SNR:

 $Q = \langle u | d \rangle$

Parameter Estimation

...which relies on Bayes' Theorem ...

 $P(\theta|\{x\}_i) \propto P(\{x\}_i|\theta)P(\theta)$

For parameter estimation, we perform inferences on parameters (θ) given observation x...

...and the likelihood function

(very expensive to compute)

Parameter Estimation

...which relies on Bayes' Theorem ...

 $P(\theta|\{x\}_i) \propto P(\{x\}_i|\theta)P(\theta)$

For parameter estimation, we perform inferences on parameters (θ) given observation x...

... and the likelihood function

(very expensive to compute)

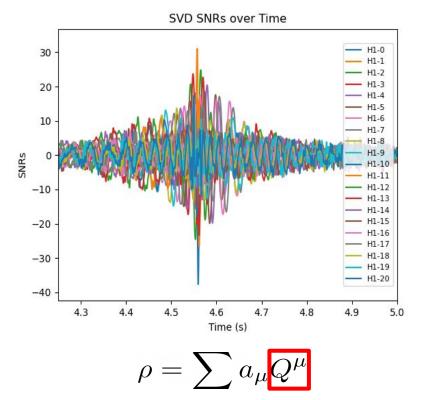
Instead, we can generate a parameter estimation using simulated observations to compute an inference.

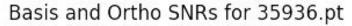
M. Cranmer at University of Cambridge

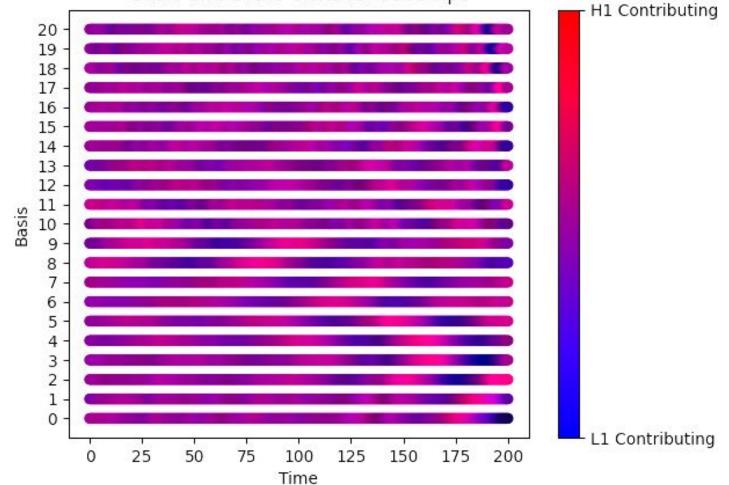
Simulation Based Inference

A likelihood free inference algorithm

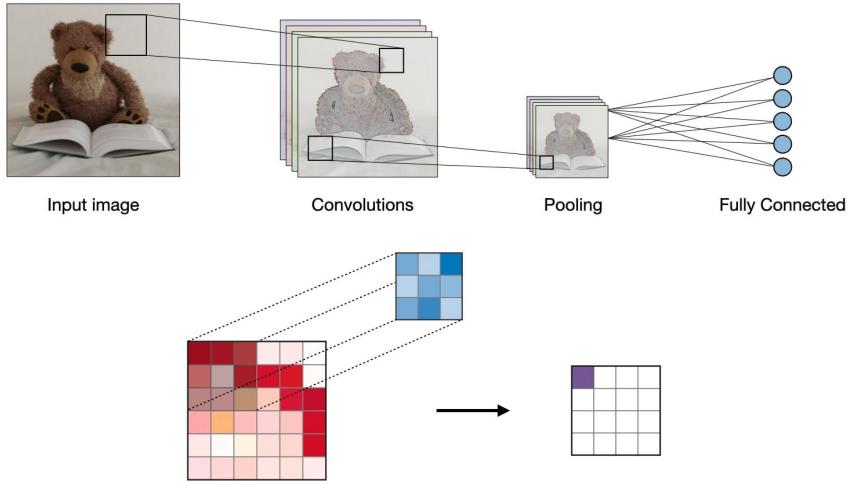
- 1. We have an array of time-series, looking at parameters $\theta_1, \theta_2, ...$
 - 2. Draw samples from prior distribution
- 3. Simulate response to that sample
- 4. Use responses and the sample to train the NN



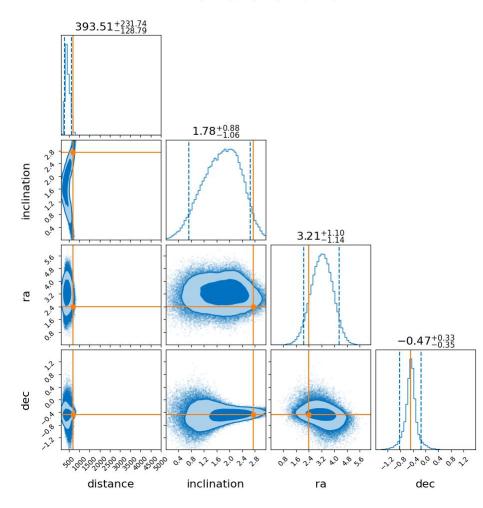




samples on y-axis taken at 2048 Hz



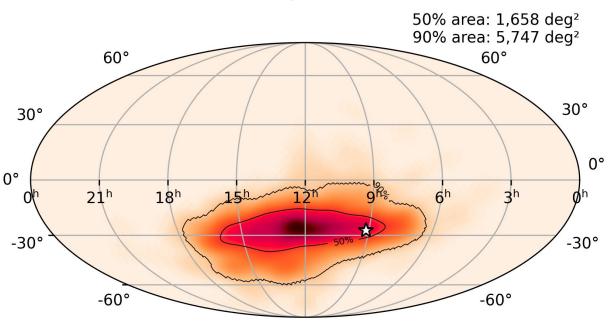
A. Amidi at Stanford University and S. Amidi at MIT



4D posterior distribution

distance, inclination, right ascension, declination

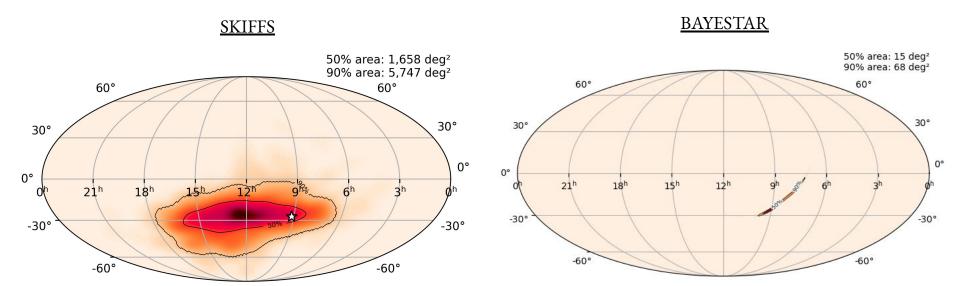
- 50,000 injections
- 15000 samples
- Distributions are fairly precise
- Right ascension and declination



SKymaps InFferred From Svds (SKIFFS)

Time to sample and plot: SKIFFS = .5 seconds BAYESTAR = 1 second

Sky Map Comparison



Sky Map Comparison

BAYESTAR **SKIFFS** 50% area: 1,853 deg² 90% area: 5,576 deg² 50% area: 1,006 deg² 90% area: 4,443 deg² 60° 60° 60° 60° × 30° 30° 30° 30° 0° 0° 21^h 15^h 12^h 6^h 18^h 9^h 3h 21^h 18^h 15^h 12^h dh -30° -30° -30° -60° -60° -60° -60°

0°

Oh

0°

-30°

Conclusions

WE KNOW

Model does a good job locating the true value More efforts towards concealing the confidence areas Different area structure

WHY?

Possible poor neural network architecture Noise realization Ridding of information on timing and phases

The importance in connecting GWs to EM

Acknowledgements

ELON

VERSITY

Ryan Magee

Family & Friends

Thank you!