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The LIGO-Virgo-KAGRA collaboration provides low-latency (near-real time) localization using the signal-to-noise
ratio measured for a single point in the search parameter space. Parameter estimation pipelines subsequently sample

the full parameter space to obtain more accurate estimates of the localization. However, this process is
computationally expensive. The multi-messenger detection of the binary neutron star merger GW170817 confirmed

the need for accurate and fast data products. Some detection pipelines utilize singular value decomposition to
reduce the filtering cost. This project uses machine learning to input signal-to-noise ratios from singular value
decomposition time series into a simulation-based inference (SBI), a likelihood-free inference algorithm, which
outputs a posterior with an accurate parameter estimation, such as a sky map, to localize compact binary

coalescences and infer other source properties.

I. INTRODUCTION

Gravitational Waves (GWs), first detected in 2015
by the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO), [1]. GWs are physical ripples in the
fabric of space and time, stretching and compressing
space. GWs originate from a compact binary coalescence
(CBC), the inspiral and merge of two extremely massive
objects such as black holes or neutron stars. GWs can
also originate from other exotic events in the universe,
such as supernovae, but this project will focus solely on
CBCs. GWs can be detected by laser interferometers
such as LIGO, which uses laser interference to measure
the impact of passing GWs [1]. Information encoded in
the GW signal detected by LIGO can give scientists valu-
able information about each source, like distance and lo-
cation.

The first binary neutron star merger, detected by
LIGO in August 2017 [2], was a breakthrough in our
understanding of astrophysics. The European Space
Agency’s INTEGRAL Telescope and NASA’s Fermi
Gamma-ray Space Telescope observed a brief gamma-
ray burst from the source [3]. The Hubble Space Tele-
scope and The Chandra X-ray Telescope also detected
electromagnetic (EM) radiation from the same direction
[3]. Further evidence shows that the James Webb Space
Telescope detected mid-infrared emission of exotic heavy-
element tellurium [4]. Analysis of the GW data and the
EM counterparts support that the progenitor was most
likely a binary neutron star (BNS) merger. The event
is important for our understanding of the universe due
to its GW and EM counterparts [2, 5–7]. Studies have
shown efforts towards low-latency GW detection [8]. This
project aims to improve the accuracy of our current low-
latency data products.

Pipeline filtering analysis computes a comparison be-
tween a large number of modeled CBC waveforms (Figure
1) and the detector output to produce a signal-to-noise
ratio (SNR). SNRs can contain GW signals from com-
pact binaries covered by background noise [9]. The data
set in Figure 1 contains waveforms accounting for a vari-
ety of masses and spins, which encompasses information
about source parameters, but seem to look similar in ap-

FIG. 1: Simulated waveform candidates. H⃗µ is a unit
less measurement, referred to as strain. Strain is the
fractional change in distance inteferometer lasers are
stretched or compressed by a passing gravitational

wave, relative to the original length.

pearance.
GW data from CBCs are dependent on a high number

of physical dimensions, such as mass, spin, distance, and
inclination. Previous studies face issues in computing ac-
curate values for all the dimensions due to the high pa-
rameter space [10–12]. GW strain observed on Earth de-
pends on an array of 15 parameters. The parameters are
as follows: mass of the primary object, mass of the sec-
ondary object, luminosity distance, the integration con-
stant, time of coalescence, position of ascension, position
of declination, inclination, polarization angle, the spin,
angle, and orientation of the primary object, and the
spin, angle, and orientation of the secondary object [13].
Although parameter estimation is difficult to compute in
high dimensions, LIGO is able to create low-latency sky
maps and measure SNRs by imposing constraints on the
signal parameter space.

A. Singular Value Decomposition

The project planned to generate low-latency sky maps
accurately by using singular value decomposition (SVD)
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(Equation 1) vectors instead of original waveforms. Since
search pipelines like gstLAL compute SVD in normal de-
tections, we want to expand the utility of the pipeline to
infer source properties directly by using the SVD vectors.
With the intuition that the project is successful, SVD can
be applied to other pipelines. Using SVD waveforms re-
duces the amount of GW filtering required to analyze a
given region of a parameter space [14].

In Equation 1, h are GW time series, a are reconstruc-
tion coefficients, and u are SVD abstract basis vectors,
all indexed by µ [14]. Equation 2 represents SNR, ρ,
which is equal to the noise-weighted inner product of a
waveform template and raw strain data, d. Substituting
Equation 1 in for h, we can use distributive properties
and replace the new inner product with the SVD SNR,
Q, shown in Equation 3, and create SVD SNR Equation
4, which can be compared similarly with SNR Equation
1.

h =
∑

aµu
µ (1)

ρ =< h|d > (2)

Q =< u|d > (3)

ρ =
∑

aµQ
µ (4)

Equation 1 is a breakdown of each waveform template
into SVD basis vectors, whereas Equation 4 is a break-
down of each original SNR into SVD SNRs. SVD basis
vectors (Figure 2) are abstract and do not contain any
concrete evidence regarding the dimensions we hope to
reveal. All of the abstract waveforms are orthogonal and
do not overlap with one another [10, 11]. LIGO creates
sky maps with SNRs as the input data, but we used SVD
SNR, Q, and attempted to infer GW source properties
from this abstract SNR.

B. Machine Learning

The modeled waveforms represented in Figure 1 can be
compiled into a parameter space shown in Figure 3, where
each point represents an individual template. Computing
abstract waveforms from SVD that will fit in the gaps of
the sample space in Figure 3 through a neural network is
an example of how to apply machine learning. A specific
number of SVDs can be added together in various ways
to create each template in the space, which means that
SVDs can include information about each template in
the space in Figure 3. Normally, low-latency sky maps
are created by selecting one template or point in Figure

FIG. 2: The result of abstract waveforms computed
through SVD using original gravitational waveforms.

FIG. 3: Search pipelines conduct gravitational wave
searches by discretely sampling this continuous signal

manifold, which is represented in this shape due to high
dimensionality. The manifold represents pre-SVD

modeled waveforms under a parameter space. The red
X indicates an area where a waveform can be created
with the SVD waveforms extracted from Figure 2 with

high accuracy.

3. Sky maps generated by full parameter estimation will
input every template in the space. Since the empty space
(represented by X in Figure 3) compares to the plotted
templates with high accuracy, it is possible to cover the
entire area in the space by using the SVDs instead of
just a single waveform, or every waveform plotted in the
space.

Parameter estimation relies on Bayes’ Theorem and
an extensive computation for a likelihood function. In
pipelines, waveforms are computed from parameters,
which then is transformed into an SNR. All of these calcu-
lations produce the proper information that allows for the
likelihood computation. Instead of a lengthy calculation,
our project looks to input SVD SNRs that are previously
computed from detection pipelines, through a neural net-
work to compute a likelihood of the physical properties of
a GW source. Using simulation-based inference, machine
learning can help us “front-load” the expensive computa-
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FIG. 4: SVD SNRs from H1 and L1 data, represented as
an input “image” for the convolutional neural network.

tions to build a posterior and calculate the likelihood of
parameters, given simulated parameters and a large set
of injection data. The project uses a convolutional neu-
ral network to connect abstract SNRs that are produced
by SVD to the physical properties of GW candidates.
Convolutional neural networks (CNNs) are common in
image classification and are used to categorize patterns
and shapes in data sets. The convolution layer takes a
kernel, slides it across our input data, and computes a dot
product with the weights represented in the kernel. The
output is a feature map, which represents specific and
common patterns in the data. The pooling layer per-
forms max pooling, where a kernel slides across the fea-
ture map, and selects the largest value within that frame.
Pooling reduces dimensionality, computational load, and
over-fitting. We have adjusted 8 factors included in the
CNN such as the kernel size and learning rate, to achieve
accurate posterior and sky map results. The use of a neu-
ral network has been confirmed and tested as a reliable
structure for a machine learning algorithm [15].

II. MOTIVATION

We researched two sky map algorithms. BAYESTAR,
which computes low-latency sky maps by assuming a
singular template [16], as represented in Figure 3, and
BILBY, which takes many templates into account for a
better localized sky map [17]. However, BILBY has a
computing time on the order of hours to days. We ex-
tracted data in square degrees and compared the two sys-
tems in a 90% confidence area. To filter data and study
true results, criteria were set at SNR signal greater than
9, and a false alarm ratio (FAR) less than 1 yr−1 or less
than 2 yr−1. BAYESTAR and BILBY data is pulled
from mock data challenges (MDCs) that were run in the
lead-up to LIGO’s fourth observing run. MDCs look at
all uploads done to a low-latency database and compares

FIG. 5: A cumulative area distribution comparison of
BILBY and BAYESTAR results. BILBY surpasses

BAYESTAR with higher frequencies at smaller areas of
degrees2.

FIG. 6: The Probability-Probability (PP) plot visually
compares the two algorithms and how well they perform

based on the theoretical model, comparing the
confidence level on the x-axis, and the probability that
the true value falls within the confidence level on the

y-axis [18].

the two sets of sky maps.

In Figures 5 and 6, evidence shows that BILBY’s
complex computations can produce a more accurate sky
map than BAYESTAR’s low-latency algorithm. Fig-
ure 5 shows that BILBY computes smaller areas to the
square degree than BAYESTAR, and Figure 6 shows that
BILBY performs closer to the theoretical model, which
tells us there is room for improvement in low-latency.
The project strives to achieve each system’s strengths of
low-latency and more accurate localization with the use
of SVDs and machine learning.
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III. METHODS

The project goal is to generate low-latency sky maps
more accurately by 1) using abstract waveforms formu-
lated by singular value decomposition already present in
data pipelines and 2) utilizing machine learning tech-
niques such as simulation-based inference (SBI) that
would reduce computational costs.

SVD SNRs were ingested into an SBI-motivated frame-
work that included the CNN to compile a parameter esti-
mation and demonstrate parameter probability. We ran
simulations to train the algorithm, allowed it to learn
the shape of our current data, and built a posterior.
From this, we compared simulated source parameters and
tested the validity of the posterior. Our final goal is to
construct an accurate sky map showing the 50% and 90%
confidence areas of the sky where the source is located.
Sky maps were generated using the inferred parameters,
right-ascension, and declination.

IV. RESULTS

By utilizing LALSuite, a public collection of gravita-
tional wave software, we set boundaries for each param-
eter and simulated injections with varying parameters to
binary coalescence gravitational wave sources. Initially,
a fully connected neural network was used for processing
data in the machine learning framework.

Due to the high level of dimensions applicable to binary
coalescences, we began testing by setting all parameters
in the LALApps configuration to fixed or 0, which al-
lowed distance to be a free parameter, with boundaries
of 100 to 1000 megaparsecs (mpc). Varying sample sizes
from 10 000 injections (5000 from each interferometer)
were processed to each include a varying distance and
an SVD time series, and added into a training network,
which resulted in a posterior. Plotting posteriors demon-
strated about 800 samples were needed to train the net-
work to achieve accurate results. To test significance,
we used measured SVD responses for known sources and
compared how well our network predicted the true value.
Randomly selected true distance values were displayed
against posteriors. 27% of true values lay outside the
predicted distribution (73% accuracy rate). Half of the
true values that fell outside the posterior were underesti-
mated due to the parameter boundary in place, for there
are signals that have been detected from distances further
than 1000 mpc. If a larger distribution of distances were
included in the training, posteriors would be underesti-
mating true values at a smaller percentage. We increased
this prior boundary to 5000 mpc in the following tests.

After one-dimensional training and plotting success, a
second free dimension, inclination, was added to the in-
jections. With a total of 10 000 injections, 3250 samples
were used to draw accurate posteriors. Approximately
15% of true values fell outside the inclination distribution
while zero true values fell outside the distance distribu-

tion, giving us a high parameter accuracy rate of 85%
accuracy rate. To check for possible bad data, more pos-
teriors were created using data from only one of LIGO’s
observatories, H1 (Handford). Between posteriors drawn
from H1 solely compared with H1 and L1 (Livingston),
distributions had an increase in variance for H1 and sim-
ilar accuracy when predicting true values. For the fol-
lowing tests, we have used data from both H1 and L1.

To set forth our goal of an accurate sky map, the next
trial included two localizing parameters, right ascension
and declination. 60 000 total injections were created and
9000 samples were drawn to plot accurate posteriors. Out
of 60 parameters in 4 dimensions, 23% of true values
fell outside the posterior (77% accuracy rate). Initial
observations from the 4-dimensional posteriors include
the lack of stability of right ascension and inclination
distribution. Even with an increased number of samples,
there is a high variance in the distribution.

The posteriors drawn in the first three trials have an
average accuracy of about 78.3%, however, the final goal
is to reach a 90% accuracy rate. Furthermore preci-
sion of the right ascension and inclination distributions
still struggled. Due to these observations, we planned
to increase both precision and accuracy by adjusting the
neural network format to a CNN. Due to the initial for-
matting required by SBI, SVD data matrices were com-
pressed into a one-dimensional list. This formatting can
forego some vital information about our data, where the
framework can struggle with separating each time series
from the next. Although the neural network is perform-
ing well for accuracy, adjustments were made to preserve
matrix structure, in hopes of better results in accuracy
and precision.

After adjustments to the neural network, initial obser-
vations show an accuracy rate for various sample sizes of
83% or greater. A sample size of 15 000 out of 50 000 in-
jections represented the greatest accuracy and precision.
Each distribution is mid-narrow in precision, with a total
accuracy rate of 90%. As expected, distance and declina-
tion are precise and accurate. We notice a bimodal vari-
ance for right ascension distributions and uniform distri-
butions for inclination. However, a bimodal distribution
is excepted for inclination. Through each adjustment
to the neural network, sample sizes, and reparameteriz-
ing, our accuracy rate generally increased since the initial
trial. At this point in the process, we trusted that the
neural network was performing at its best.

Using the previous posterior distributions discussed,
we were able to use the right ascension and declination
and directly plot a sky map for each injection’s inferred
posterior. A generated sky map is shown in Figure 7.
The model created can identify the true localization but
has a hard time calculating more precise confidence areas.

The wide confidence areas calculated can be due to
several reasons, possibly a poor neural network architec-
ture, noise realization, or maybe ridding of important
information when using SVDs that are unaccounted for.
The project’s future direction includes using data of the
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FIG. 7: A sky map is produced directly using posterior
distributions from an observed injection in the sample
set. The title represents the true values of the injection.
The 50% and 90% confidence areas are also computed.

time delay detected by LIGO as a tool for inferring the
parameter estimations we wish to produce in our neural
network. Due to the geographical separation distance of
the detectors, as a GW passes through Earth, there is a
difference in time from when each detector experiences
the GW. This is defined as the time of the detection at
the instrument, which equals the time the wave passes
through Earth’s center, plus a delay that depends on
the right ascension and declination of the source. The
right ascension and declination of a GW source can af-
fect the time delays between detections at different LIGO

sites, and these time delays are crucial pieces of informa-
tion used to determine the properties and location of the
source.

V. IMPLICATIONS

Data attainment and detection times have been min-
imized in recent research. Data interpretation still re-
quires extreme expenses and effort. It is important to
localize sources quickly and allow for EM counterpart
follow-up to test and study the connections between GWs
and EM radiation. The project offers an open door into
a new interpretation methodology to infer gravitational
wave source properties fast with accurate precision and
has made great strides in creating accurate, low-latency
sky maps.
As the next generation of GW observatories rises, low-

latency data interpretation will be imperative for the pos-
sible detections scientists foresee with newer technologies.
The Einstein Telescope (ET) will attempt to detect the
GW and short gamma-ray bursts of BNS mergers at high
redshift [19]. The Laser Interferometer Space Antenna
(LISA) will attempt to detect GW inspirals from dis-
tant CBCs including BNS [20]. Both projects, aiming
to locate GWs and EM can succeed even further when
accurately localizing sources in low-latency. The goal to
calculate the physical properties of the CBC from the ab-
stract waveforms efficiently will allow instantaneous re-
view of possible overlaps in GW with EM data.
This work was supported by the National Science

Foundation Research Experience for Undergraduates
(NSF REU) program, the LIGO Laboratory Summer Un-
dergraduate Research Fellowship program (NSF LIGO),
and the California Institute of Technology Student-
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