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Due to the recent confirmation of GW170817, a binary neutron star merger, which sent us electromagnetic and
gravitational wave data, it is important for astronomers to have the ability to efficiently interpret data. Extensive
research has been conducted on low-latency detections, but our goals focus on decreasing time and efforts for data
interpretation. Singular value decomposition is applied to original GW form candidates to minimize the efforts of
LIGO’s filtering analysis. This project inputs signal-to-noise ratios from SVD waveforms into a neural network,

trains an algorithm, and hopes to achieve an output of a more accurate parameter estimation, such as a SkyMap to
localize compact binary coalescences.

I. INTRODUCTION

Gravitational Waves (GWs) were first detected in 2015
by the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1]. GWs are physical ripples in the fab-
ric of space and time, stretching and compressing space.
GWs originate from compact binary coalescence (CBC),
the compact inspiral and merge of two extremely massive
objects such as black holes or neutron stars. GWs can
also originate from other exotic events in the universe,
such as supernovae, but this project will focus solely on
CBCs. GWs are detected by laser interferometers such
as LIGO, which uses laser interference to measure the
impact of passing GWs [1]. Information encoded in the
GWs signal from LIGO can give scientists valuable infor-
mation about each source, like distance and location.

The first binary neutron star merger, detected by
LIGO in August 2017, [2] was a breakthrough for the un-
derstanding of astrophysics. Both the Europeans Space
Agency’s INTEGRAL telescope and NASA’s Fermi
Gamma-ray Space telescope observed a brief gamma-
ray burst from the source [3]. The Hubble Space Tele-
scope and The Chandra X-ray Telescope also detected
electromagnetic (EM) radiation from the same direction
[3]. Further evidence shows that the James Webb Space
Telescope detected mid-infrared emission of exotic heavy-
element tellurium [4]. Analysis of the GW data and the
EM counterparts supported that the progenitor was most
likely a binary neutron star merger. The event is impor-
tant for the understanding of the universe due to its GW
and EM counter parts [2, 5, 6] because it is the first open
door to multi-messenger astronomy.

Studies have shown efforts towards low-latency GW
detection [7]. This project aims to improve the efficiency
of data interpretation, specifically localization.

Interferometers complete GW searches and filters data
with expected GW forms. The filtering analysis com-
putes a comparison between a large number of modeled
CBC waveforms (Figure 1) and the detector output to
produce a signal-to-noise ratio (SNR). SNRs can con-
tain GW signals from compact binaries covered by back-
ground noise [8]. The data sets in Figure 1 contain wave-
forms accounting for a variety of masses and spins, which
contain information about source parameters, but seem
to look similar in appearance. However, these waveforms
differ in computational complexity [9].

FIG. 1: Original waveform candidates of real GW. H⃗µ

is an arbitrary unit of measurement, referred to as
strain. Strain is the distance the lasers are stretched or
compressed by a passing gravitational wave, relative to

the original length.

GW data from CBCs are dependant on a high num-
ber of dimensions and studies face issues in quantifying
them [9–11]. The GW strain observed on earth depend
on an array of 15 parameters. The parameters are as fol-
lowed: chirp mass, symmetric mass, luminosity distance,
the integration constant, time of coalescence, position
of ascension, position of declination, inclination, polar-
ization angle, spin of the primary object which includes
the spin itself, the angle, and the orientation, and the
spin,angle, and orientation of the secondary object [12].
Awareness of the size of the parameter space is vital to
the probability results. It is difficult to apply these meth-
ods over a fixed sample of data, as well as a fixed number
of dimensions to attain quality results [9], hence the ex-
treme efforts and costs full parameter estimation process
require.

LIGO is able to create low-latency SkyMaps and mea-
sure SNRs by imposing constraints on the signal param-
eter space. Full parameter estimation measures this for
many masses which generates more accurate SkyMaps
for localization. However, this can take a long time, that
it is computationally expensive.
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FIG. 2: The figure represents pre-SVD modeled
waveforms under a parameter space of a maximum of 4
dimensions. The red X indicates a possible abstract

modeled waveform.

A. Singular Value Decomposition

We plan to generate SkyMaps more efficiently and ac-
curately by using two strategies, one of which will be us-
ing singular value decomposition (SVD) (Equation 1) on
original waveforms and mapping them onto an abstract
parameter space. Original waveforms can be transformed
through SVD which reduces the amount of GW filtering
required to analyze a given region of a parameter space of
compact binary coalescence [13]. However, the abstract
waveforms complied through SVD (Figure 3) do not con-
tain any concrete evidence regarding dimensions we hope
to reveal. All of the abstract waveforms are orthogonal
and do not overlap with one another [10, 11]. Our project
aims to create a structure to reveal dimensions from ab-
stract vectors and localize CBC sources efficiently.

B. Machine Learning

The modeled waveforms represented in Figure 1 can
be compiled into a parameter space shown in Figure 2.
Computing abstract waveforms from SVD that will fit in
the gaps of the sample space in Figure 3 through a neural
network is an example of how apply machine learning.
Computationally comparing SVD waveforms with orig-
inal waveforms can be an extensive process. Instead of
waiting to map the SVD for comparison with the original
waveforms, our project looks to use the abstract wave-
forms through a neural network to discover the physical
properties of a GW source. The use of a neural network
has been confirmed and tested as a reliable structure for
a machine learning algorithm [14].

II. PROJECT PLAN

Normally, waveforms that are filtered into GW candi-
dates will be applied to an equation to map a Bayesian

FIG. 3: The result of abstract waveforms computed
through SVD using original gravitational waveforms

inference parameter estimation, and demonstrate prop-
erty probabilities of the CBC. However, this process is
expensive and time-consuming. The proposed project
will use neural networks to connect abstract SNRs that
are produced by SVD to the physical properties of GW
candidates. SNR time series will be computed from
SVD waveforms, which than will be ingested into a neu-
ral network to compile a localization parameter estima-
tion and demonstrate localization dimension probability.
SkyMaps will be centralized on source localization and
distance.
The project will consist of generating SkyMaps more

efficiently and accurately, by 1) using abstract waveforms
formulated by Singular Value Decomposition and 2) uti-
lizing machine learning techniques such as Simulation
Based Inference (SBI) that would reduce computational
costs while producing a low-latency, SkyMap result.
Using SVD, Equation 1 is applied to waveforms shown

in Figure 1. Abstract waveforms (Figure 3) will automat-
ically produce a SNR which is fed into the neural net-
work, to achieve a parameter distribution. Since filtering
analysis can be computationally expensive, we want to
reduce the expenses of GW filtering, and apply SVD to
the original waveforms [7]:

h =
∑

aµu
µ (1)

where h are physical waveforms, a are reconstruction co-
efficients or overlaps, and u are the new, abstract basis
vectors, all indexed by µ [13]. We can easily view more
extreme differences between the wave forms after SVD
transformation. Also, a smaller set of data is obtained
through SVD. The abstract vectors are formulated from
real GW data, but the calculation of true SNR from the
cosmos can be expensive to compute through GW filter-
ing.
Machine learning can help us find more efficient ways

to interpret strain data. Past strain data and the corre-
sponding outputs (SkyMap values that were previously
formulated) will be fed into an SBI motivated framework.
We will indicate a parameter set, run simulations to train
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the algorithm, allow it to learn the shape of our current
data, and build a posterior. From this, we can then in-
put SVD SNRs and hope for an outcome that tells us
characteristics about the source, quicker than using the
original waveforms. Our final goal will be to construct an
accurate SkyMap showing the 50% and 90% confidence
areas of the sky where the source is located.

To justify our project, we researched two SkyMap
algorithms. BAYESTAR, which computes low-latency
SkyMaps by assuming a singular mass [15], and BILBY,
which takes many masses into account for a better lo-
calized SkyMap [16]. However, BILBY has a comput-
ing time on the order of hours to days. We extracted
data in square degrees and compared the two systems in
50% and 90% confidence areas. To filter data and study
true results, criteria have been set at signal-to-noise sig-
nal greater than 9, and a false alarm ratio (FAR) less
than 3.171e-9 (1 in 10 years) or less than 6.342e-8 (1 in
6 months).

Evidence shows that although BILBY’s complex com-
putations can be prolonged, it can produce a more accu-
rate SkyMaps than BAYESTAR’s low-latency algorithm.
The project strives to achieve each algorithm’s strengths
of low-latency and more accurate localization with the
use of SVDs and machine learning.

When applying abstract waveforms and SNR to the
creation of the SkyMap parameter estimation, we can de-
cipher which models fit the estimation, while looking for
higher probabilities for the dimension. Indicating more

probable models and tracing back to our neural network,
we can identify the value of factor a from Equation 1 to
better understand the quantitative values of the individ-
ual dimensions within abstract waveforms.
By utilizing LALApps, a public collection of gravita-

tional wave data, we are able to set values for each pa-
rameter and initiate a variety of distances to binary co-
alescence gravitational wave sources. We have generated
simulated signals to be used in the training network. Due
to the high level of dimensions applicable to the binary
coalescences, all parameters in the LALApps configura-
tion were kept fixed at a selected measurement, which
allowed distance to be a free parameter.
We hope our project of applying SVD and machine

learning will introduce a low-latency method of accurate
localization from abstract waveforms efficiently and in-
expensively.

III. IMPLICATIONS

Data attainment and detection times have been min-
imized in recent research. Data interpretation still re-
quires extreme expenses and efforts. The goal to calcu-
late physical properties of the CBC from the abstract
waveforms efficiently will allow a beginning to instanta-
neous review of possible overlaps in GW with EM data.
This multi-messenger cooperation allows astronomers to
view the universe through a lens never examined before.
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