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Due to the recent confirmation of GW170817, a binary neutron star merger, which sent us electromagnetic and
gravitational wave data, it is important for astronomers to have the ability to efficiently interpret data. Extensive
research has been conducted on low-latency detections, but our goals focus on decreasing time and efforts for data
interpretation. Singular value decomposition is applied to original GW form candidates to minimize the efforts of
LIGO’s filtering analysis. This project inputs signal-to-noise ratios from SVD waveforms into a neural network to

achieve an output of a parameter estimation of source dimensions.

I. INTRODUCTION

Gravitational Waves (GW) were first detected in 2015
by the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1]. GW are physical ripples in the fabric
of space and time, stretching and compressing space mat-
ter. For this project, we will focus on GW that originate
from compact binary coalescence (CBC), which consists
of the attraction and aggressive combination of two ex-
tremely massive objects such as black holes or neutron
stars. However, GW can also originate from other ex-
otic events in the universe, such as supernovae. They are
detected by laser interferometers such as LIGO, which
uses laser interference to measure the impact of passing
GW [1]. GW can be detected in other ways, but we
will use data from LIGO for the purpose of this project.
LIGO can give scientists valuable information about each
source, like mass or location.

The first binary neutron star merger [2] was a break-
through for the understanding of astrophysics. Both the
Europeans Space Agency’s INTEGRAL telescope and
NASA’s Fermi Gamma-ray Space telescope observed a
short emission of gamma-rays [3]. The Hubble Space
Telescope and The Chandra X-ray Telescope also de-
tected radiation from the same direction [3] in August
2017. It was discovered to be a binary neutron star
merger. The detection of this merger has allowed us to
view this event in two different ways. The event has
emitted radiation as well as a GW and is classified as a
multi-messenger event [2]. Due to GW, astronomers are
able to study characteristics of merging binary systems,
such as signal-to-noise ratio (SNR), mass, and electro-
magnetic radiation [4, 5]. Studies have also shown in-
credible efforts towards low-latency detection times and
efficient data attainment [6]. We have become skilled at
low detection times, up to less then a second [5, 6]. This
project aims to improve the efficiency of data interpreta-
tion. Although attainment time is crucial to this process,
our understanding about the physical dimensions of GW,
allows us to compare findings with scientists who follow
electromagnetic radiation. This is a first open door to
multi-messenger astronomy.

Interferometers complete GW searches and automati-
cally filter data with expected GW forms. The filtering
analysis computes a comparison between a large num-
ber of modeled CBC waveforms and the detector output,
which may contain GW signals from compact binaries

FIG. 1: Original waveform candidates of real GW.

covered by background noise [7]. The result is a wave-
form sample space as shown in Figure 1. It is vital to
extract as much information as possible from GW and
understand how studies face issues when attempting to
discover different dimensions [8–10]. These original data
sets in Figure 1 contain waveforms which hold informa-
tion about dimensions and seem to look similar in appear-
ance. However, these waveforms differ in computational
complexity [10].

Efforts to decrease attainment times on GW data have
been extensive [6] , but many have not studied the ef-
forts needed for low-latency interpretation of GW de-
tections. The process to uncover source dimensions can
be expensive and time consuming. Original waveforms
can be transformed through singular value decomposi-
tion (SVD) which reduces the amount of GW filtering
required to analyze a given region of parameter space of
compact binary coalescence [11]. However, the abstract
waveforms complied through SVD (Figure 3) do not con-
tain any concrete evidence regarding the dimensions we
hope to reveal. All of the abstract waveforms exist in
unique dimensions and do not overlap with one another
[8, 9]. Our project aims to create a structure to reveal
these dimensions from abstract vectors to obtain new in-
formation efficiently.

The modeled waveforms represented in Figure 1 can
be compiled into a parameter space, graphed by up to
four selected dimensions shown in Figure 2. Computing
abstract waveforms from SVD that will fit in the gaps of
the sample space in Figure 3 is one way to apply machine
learning. Computationally comparing SVD waveforms
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FIG. 2: The figure represents pre-SVD modeled
waveforms under a parameter space of a maximum of 4
dimensions. The red X indicates a possible abstract

modeled waveform.

with original waveforms can be an extensive process. In-
stead of waiting to map the SVD for comparison with the
original waveforms, our project looks to use the abstract
waveforms through a neural network to discover the phys-
ical properties of GW. The use of a neural network has
been confirmed and tested as a reliable structure for a
machine learning algorithm [12].

Normally, waveforms that are filtered into GW candi-
dates will be applied to an equation to map a Bayesian
inference parameter estimation, and demonstrate prop-
erty probabilities of the CBC. However, this process is ex-
pensive and time-consuming. The proposed project will
use neural networks to connect abstract waveforms that
are produced by SVD to the physical properties of GW
candidates. SNR time series will be computed from SVD
waveforms, which than will be ingested into a neural net-
work to compile a parameter estimation and demonstrate
dimension probability. This estimation space, shown in
Figure 4, has the potential to hold important informa-
tion regarding specific dimensions of GW, solely created
through abstract waveforms.

II. PROJECT PLAN

Our first goal is to use the neural network to create
a sample of abstract waveforms from the original wave-
forms. Using SVD, Equation 1 is applied to waveforms
shown in Figure 1. Abstract waveforms (Figure 3) will
automatically produce a SNR which is fed into the neural
network, to achieve a possible parameter distribution.

Since filtering analysis can be computationally expen-
sive, we want to reduce the expenses of GW filtering, and
apply SVD to the original waveforms [6]:

h =
∑

aµu
µ (1)

where h are physical waveforms, a are reconstruction co-
efficients or overlaps, and u are the new, abstract basis

FIG. 3: The result of abstract waveforms from SVD
computed using original gravitational waveforms

FIG. 4: An example of a parameter estimation that we
hope to produce using SVD, abstract waveforms instead

of original wave forms. For each event (y-axis) the
estimation shows parameters for possible values of the
specified dimension. The more spread data for each

event, the more uncertain we are about the value of the
dimension [13].

vectors [11]. We can easily view more extreme differences
between the wave forms after SVD transformation. Also,
a smaller set of data is obtained through SVD. The ab-
stract vectors are formulated from real GW data, but the
calculation of real waves from the cosmos can be expen-
sive to compute through GW filtering.

After SVD transformation to compute abstract wave-
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forms, each wave is scanned with an abstract model to
compute a SNR. The SNR is applied to an equation that
maps a Bayesian inference parameter estimation. The
Bayesian framework allows the evaluation of the proba-
bility of dimensions [10] of abstract waveforms. However,
this is where we will use the neural network instead of a
complicated computation. Directly using Bayesian cal-
culations to map the parameter estimation can be costly
and contain extensive efforts. To avoid this, we will apply
machine learning to SNRs to discover values in a variety
of different dimensions. We aim to minimize interpre-
tation time with the use of a neural network through
machine learning to map an inference parameter estima-
tion.

When applying abstract waveforms and SNR to the
creation of the parameter estimation, we can decipher
which models fit the estimation, while looking for higher
probabilities for each dimension. Indicating more prob-
able models and tracing back to our neural network, we
can identify the value of factor a from Equation 1 to bet-
ter understand the quantitative values of the individual
dimensions in-bedded in abstract waveforms. Awareness

of the size of the parameter space is vital to the proba-
bility results. It is difficult to apply these methods over a
fixed sample of data, as well as a fixed number of dimen-
sions to attain quality results [10], hence the extreme
efforts and costs this process would require. We hope
our project of applying SVD and machine learning will
introduce a simplistic method of data interpretation from
abstract waveforms efficiently and inexpensively.

III. IMPLICATIONS

Data attainment and detection times have been min-
imized in recent research. Data interpretation lies in a
realm of expenses and extreme efforts. The goal to cal-
culate physics properties of the CBC from the abstract
waveforms efficiently will allow a beginning to instanta-
neous review of possible overlaps in GW with EM data.
This multi-messenger cooperation allows astronomers to
view the universe through a lens never examined before.

[1] B. P. Abbott et al. (LIGO Scientific), Phys. Rev. D 95,
062003 (2017), arXiv:1602.03845 [gr-qc].

[2] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].

[3] NASA ESA (2017).
[4] R. Magee et al., Astrophys. J. Lett. 910, L21 (2021),

arXiv:2102.04555 [astro-ph.HE].
[5] B. P. Abbott, R. Abbott, T. D. Abbott, Abernathy, and

others., .
[6] K. Cannon et al., Astrophys. J. 748, 136 (2012),

arXiv:1107.2665 [astro-ph.IM].
[7] A. Reza, A. Dasgupta, and A. S. Sengupta, (2021),

arXiv:2101.03226 [gr-qc].
[8] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 84,

084003 (2011), arXiv:1101.4939 [gr-qc].

[9] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 85,
081504 (2012), arXiv:1108.5618 [gr-qc].

[10] J. Veitch et al., Phys. Rev. D 91, 042003 (2015),
arXiv:1409.7215 [gr-qc].

[11] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C.
Searle, and A. J. Weinstein, Phys. Rev. D 82, 044025
(2010), arXiv:1005.0012 [gr-qc].

[12] R. Qiu, P. G. Krastev, K. Gill, and E. Berger, Phys. Lett.
B 840, 137850 (2023), arXiv:2210.15888 [astro-ph.IM].

[13] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X
11, 021053 (2021), arXiv:2010.14527 [gr-qc].


