

100 kg optic on an upgraded suspension for LIGO A#

LVK meeting, Toyama

Brian Lantz, Sept 2023, drawing extensively from Heavy suspension subgroup of the LSC - esp. Edgard Bonilla, Calum Torrie, Eddie Sanchez, Betsy Weaver, Conor Mow-Lowry, Giles Hammond, Peter Fritschel

G2301746

2

 LIGO A[#] is the recommend path forward for upgrading the existing LIGO detectors after O5

LIGO A[#]

- Key upgrade is 100 kg optics & suspensions, see 'Post 05 report' LIGO-T2200287
- "Heavy SUS" or BHQS
- "workshop parameters" (T2300137)
 - same length as aLIGO
 - same aspect ratio
 - ~ 27 cm thick, 46 cm diam.
 - fibers at I.6 GPa (2x current)
 - 400 kg main chain
 - Set to "middle" of the ISI to remove the balancing masses
 - allowed a larger footprint
 - double reaction chain

• LIGO A[#] is the recommend path forward for upgrading the existing LIGO detectors after O5

LIGO A#

 Key upgrade is 100 kg optics & suspensions, see 'Post 05 report' LIGO-T2200287

LIGO A#

- 00 COR1)
- CAD sketch by Eddie Sanchez, <u>D2300132</u>
- Keep the existing ISI
- Fit is an issue, esp. for transmon
- All install to be done "cartridge" style

Why 100 kg?

- Larger suspensions possible because H2 is moving to India
- Heavier optics have lower thermal noise and better 'radiation pressure' noise
- Heavier optics (higher moment) have lower Sigg-Sidles frequencies - leads to lower ASC noise
- Hard to push above 100 kg AdvVirgo+ optics are \sim 100 kg, and so the LMA fixturing in the coating machines is an issue
- ISI total payload is 1000-1100, so main chain limited to about 400 kg. If the test mass gets to be a larger fraction of the total chain mass, the 10 Hz isolation gets worse.

LSC Heavy Optic needs Heavy Chain

Test Mass should only be 1/3 to 1/4 of the total suspension chain mass, The top mass should be the heaviest.

Illustrate with simple model - 4 stage mass-spring system, Set mirror mass, total mass at 400 kg, and first mode at 0.6 Hz. Find springs and masses to get best 10 Hz isolation.

3 cases - final mass of 100 kg, 135 kg, & 200 kg

This optimization has more freedom than is realistic, but illustrates point that mass probably shouldn't be more than about 1/4 to 1/3 of the total suspension chain mass.

chain I:	chain 2:	chain 3:
(ml:148.0)	ml:121.5	m1:82.5
m2:93.2	m2: 84.6	m2: 65.5
m3: 58.8	m3: 58.9	m3: 52.0
(m4: 100)	m4: 135	m4: 200
calculated with T2100287		

Thermal noise

Thermal noise at 10 Hz is about 5e-20 m/rtHz

Design target is 6e-20 m/rtHz (

Fibers stressed to 1.6 GPa (2x aLIGO), see Glasgow presentations

Higher stress fibers also puts bounce/ roll modes at 6.2 Hz & 8.7 Hz

Length Isolation

Total is below the 6e-20 target @10 Hz

- Assumes local IFO sensors on the TOP and UIM (HoQI, COBRI, SmarAct)
 - the ISI motion dominates at all frequencies (best chamber, quite time)
 - opportunity for better ISI sensors (fused silica seism., 6D, CRS, SPI)

It's the controls

Noise budgets continue to show ASC noise significantly above quantum noise at low end of the detection band

It's the controls

Noise budgets continue to show ASC noise significantly above quantum noise at low end of the detection band

It's the controls

Noise budgets continue to show ASC noise significantly above quantum noise at low end of the detection band

Can we modify the suspension to reduce control noise?

- In particular reduce the ASC noise
- Heavy (High-moment) test mass to reduce the Sigg Sidles mode frequency damping this mode drives the ASC control.
- Reduce all the angular excitations of the mirror seismic, local damping, and cross coupling from LSC. Reduce the BW of the alignment control needed to achieve 1e-9 radians RMS.
- (Also reduce the ASC sensing noise, and coupling of ASC to length, but not in this talk)

Sigg-Sidles modes

• at 1.5 MW, Pitch and yaw modes set by Sigg-Sidles & optic

 can damp with ASC, and keep the Ie-I7 rad/rtHz at I0 Hz,
only (probably) if the ASC rms control is well separated from the 2.6 Hz damping

Edgard Bonilla, <u>G2300771, T2300150</u> G2

Decouple Length & Pitch

- Current Quads have 2 wires at the top, so optic pitch is all from the control and ISI Length
- New "workshop parameters" have 4 wires at the top, more coupling from ISI pitch, less from length
- Puts all the wires vertical (OK if the springs take up big footprint on the ISI)
- Attach all the wires "at" the center of mass

Decouple Length & Pitch

15

Cross coupling is greatly reduced in design:

- nominal is 0, because attachments, cg, and actuators aligned
- Large moments lower compliance of pitch/ yaw
- simpler pitch plant makes compensation practical

RMS angle of the mirror

- KAGR Angular motion of the optic from ISI & SUS sensors is very small. Again, ISI dominates at all frequencies
- Cross-coupling from LSC is small
- Very promising for improved ASC noise couping

16

(we're trying to learn from experience)

- Faster installation full assembly and integration outside the chamber (Betsy, Calum)
- Baffles incorporated with the cage (Calum, Alena)
- FROSTI for improved thermal compensation (Cao
- Violin-mode dampers (Georgia Mansell & Trent Gayer)
- Automatic control design (lan MacMillan & Lee McCuller)
- Cage Design and SUS prototyping at MIT (Regina Lee and JD Heyns)

KAGR

and so...

- Significant effort underway to design the A[#] suspension (BHQS)
- High stress fibers improve the suspension thermal noise
- Bigger mass manages Sigg-Sidles modes
- Update to GEO/ aLIGO design to improve control, and addition of new sensors should improve the "control" noise so that we can appreciate better thermal noise
 - but -
- Just starting on the ASC modeling and actuator noise
- Can we fit a top mass that big?
- Should we add other sensors?
- Double reaction chain? really?
- Where to put the transmon suspension? etc. etc.
- Significant update, we've learned a lot from aLIGO, and it's a step leading directly towards Cosmic Explorer

concerns

- Compensation plate what are the requirements?
- Where to put FROSTI and TransMon
- angular dynamics at high power
- what excites the SS mode?
- •

