

Exploring Large Vacuum Systems at LIGO

A Brief Introduction to the Vacuum Challenges of the Cosmic Explorer

Melina Fuentes-Garcia LIGO Lab Caltech

AVS 69th International Symposium & Exhibition Vacuum Technology Division - Particle Accelerators and Large Vacuum Systems November 7th, 2023

Outline

LIGO

- LIGO & Cosmic Explorer
 - Vacuum system drivers, requirements & challenges
- Studies on alternative beamtube materials
 - Mild steel manufacturing and outgassing
- Techniques for eliminating high temperature water bakeouts
 - Low temperature bake experiments
 - Ultra-high-purity dry air backfill experiments
 - Traveling induction heater experiments

Laser Interferometer Gravitational-Wave Observatory (LIGO)

- Michelson interferometer \rightarrow two 4-km arms
- Detect major events in our universe → binary black hole, binary neutron star, black hole-neutron star collisions
 - Sensitivity up to 160 MPc^{*} \rightarrow ~520 million light years away!
- Stringent noise requirements
 - Ultra-high-vacuum (UHV) environment
 - Sealing and pumping
 - Contamination control
 - Material outgassing (water, hydrogen, hydrocarbons, etc.)
 - Vibration isolation/dampening
 - Stray light mitigation

* Coalescing binary neutron stars sensitivity currently in observation run 4.

LIGO: (Top) Aerial view of Livingston, Louisiana site (LLO) and (Bottom) Ground view near mid-station of Hanford, Washington (LHO). Two sites 3000 km apart operating simultaneously for coincident detection.

AVS 69, VT-TuM-12: Exploring Large Vacuum Systems at LIGO

Gravitational wave strength

Ability to detect gravitational waves relies on detector sensitivity (or strain)

$$h = \Delta L / L$$

LIGO's 4 km arms can detect a change of

$$\Delta L = h \times L \approx 10^{-22} \times 4,000 \ m \approx 4 \cdot 10^{-19} \ m$$

Increased **arm length** → Increased **sensitivity**

Cosmic Explorer (CE)

- Third generation gravitational wave detector that aims to scale LIGO detectors by a factor of 10!
 - LIGO's 4 km arms scaled to **40 km arms!**
- Vacuum size: 90-million-liter vacuum system nominally sustained at 1 x 10⁻⁹ Torr
- Anticipated detector sensitivity of ~ 10^{-25} Hz^{-1/2}
 - Looking back to "Cosmic noon"
- Plan for multiple detectors: 40 km and 20 km pair
- Vacuum system cost
 - \$635M for CE UHV system
- Collaborations on vacuum challenges
 - US groups
 - NIST, Jefferson Lab, College of William & Mary, Dan Henkel (metallurgy expert, Material Forensics LLC), Fred Dylla (UHV materials expert, past AVS President)
 - European colleagues
 - CERN (VSC group, Paolo Chiggiato), Einstein Telescope

Cosmic Explorer: Artist illustration of aerial view of Cosmic Explorer.

Vacuum System Drivers Geometry, Pumping, Materials

- Same geometry as LIGO <u>except</u> for the length of vacuum arms
- Alternative beamtube material → mild steel
- Pumping configuration TBD by ultimate outgassing properties of materials
 - Non-evaporable getters (NEG, such as ZAO) & Ion Pumps along the arms will use distributed pumping which is not the case for LIGO
 - Large cryopumps at termini
 - \circ 2 km modules that repeat for 40 km

Vacuum System Requirements UHV & Outgassing

Ultra-high-vacuum required:

- $P_{\text{Beamtubes}} < 10^{-9} \text{ Torr}$
- P_{Chambers} < 10⁻⁹ Torr

Partial pressures required):

- $P(H_2) < 10^{-9} \text{ Torr}$
- $P(H_2O) < 10^{-10}$ Torr
- $P(C_xH_v) < 10^{-14} \text{ Torr}$

		Beamtubes			Chambers	
	Species	Req / torr	Goal / torr	LIGO Achvd / torr	Req / torr	Goal / torr
	He	$1.3 imes 10^{-9}$	$3.4 imes 10^{-10}$		8.8×10^{-10}	$7.9 imes 10^{-11}$
	H ₂	3.3×10^{-10}	8.3×10^{-11}	$3.4 imes 10^{-9}$	$3.1 imes 10^{-9}$	2.8×10^{-10}
	Ne	1.8×10^{-10}	4.5×10^{-11}		3.9×10^{-10}	3.5×10^{-11}
	H ₂ O	3.0×10^{-11}	$7.6 imes 10^{-12}$	2.3×10^{-12}	$1.0 imes 10^{-9}$	9.4×10^{-11}
	O ₂	2.1×10^{-11}	5.3×10^{-12}	2.0×10^{-13}	$7.8 imes 10^{-10}$	$7.0 imes 10^{-11}$
	N_2	1.9×10^{-11}	$4.7 imes 10^{-12}$	1.0×10^{-13}	$8.3 imes 10^{-10}$	7.5×10^{-11}
	Ar	$6.7 imes 10^{-12}$	1.7×10^{-12}	$9.0 imes 10^{-14}$	2.8×10^{-10}	2.5×10^{-11}
	CO	5.8×10^{-12}	1.4×10^{-12}	2.0×10^{-12}	3.3×10^{-10}	3.0×10^{-11}
	CH_4	4.8×10^{-12}	1.2×10^{-12}	2.2×10^{-11}	$4.4 imes 10^{-10}$	$4.0 imes 10^{-11}$
	CO_2	2.8×10^{-12}	$6.9 imes 10^{-13}$	4.0×10^{-13}	$2.7 imes 10^{-10}$	2.4×10^{-11}
	Xe	$6.3 imes 10^{-13}$	$1.6 imes 10^{-13}$		$1.5 imes 10^{-10}$	$1.4 imes 10^{-11}$
	$100 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	8.9×10^{-14}	2.2×10^{-14}		1.8×10^{-10}	1.6×10^{-11}
	$200 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	$1.7 imes 10^{-14}$	4.2×10^{-15}		1.2×10^{-10}	1.1×10^{-11}
	$300 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	6.2×10^{-15}	$1.5 imes 10^{-15}$		$1.0 imes 10^{-10}$	9.2×10^{-12}
	$400 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	3.1×10^{-15}	7.6×10^{-16}		8.8×10^{-11}	$7.9 imes 10^{-12}$
	$500 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	$1.7 imes 10^{-15}$	4.3×10^{-16}		$7.9 imes 10^{-11}$	$7.1 imes 10^{-12}$
	$600 \mathrm{u} \mathrm{H}_n \mathrm{C}_m$	1.1×10^{-15}	2.8×10^{-16}		7.2×10^{-11}	6.5×10^{-12}
THE ROLL OF THE PARTY OF THE						

CE Outgassing: Preliminary residual gas outgassing requirements for CE.

Vacuum System Challenges (I): Studies on alternative beamtube material

Why not use stainless steel (SST) like the LIGO beamtubes?

Several factors considered when selecting BT material.

Besides costs associated with SST, H_2O outgassing is a main concern.

Water's binding energy on SST centered around 1 eV
 → long pump down times and long bake times to remove water

Outgassing studies on **mild** (low carbon) steels proved it a viable option \rightarrow about same H₂O outgassing as SST, but (~100x) less H₂ outgassing

LLO Beamtube: Side view of exposed beamtube during construction at LLO.

Studies on alternative beamtube materials Mild Steel - Manufacturing

Gas or petroleum pipeline:

- Cost reducer → saving \$300M vs SST
- Large order size available → 80 km "small" order
- Established QA system
- Spiral welded
- No He leak testing available \rightarrow need to revive leak detector
- 0.5" thick walls → stable to atm, resistant to buckling/damage, self supporting
- Epoxy coatings available for corrosion prevention
- Natural oxide layers (magnetite) → outgassing, optical scatter, corrosion

Gas pipe mill: Mills capable of large order sizes and established QA system in place for fuel gas pipeline safety (US DOT).

LIGO

Studies on alternative beamtube materials Mild Steel - Outgassing

- Mild steel exhibits much lower H₂ outgassing vs stainless steel, mainly due to manufacturing processes (vacuum degassing during melting)
 - $\circ \qquad q = 2 \ x10^{-16} \ Torr \ L/s \ cm^2 \ for \ A36^*$
 - $\circ \qquad q = 7 \ x \ 10^{\text{-}12} \ \text{Torr} \ L/s \ cm^2 \ for \ 304 L^{\star}$
- Mild steel H₂O outgassing levels comparable to stainless steel
 - $q_{10} \sim 10^{-10}$ Torr L/s cm² for A36*
 - \circ q₁₀ ~ 10⁻¹⁰ Torr L/s cm² for 304L*
 - \circ $q_{10}^{10} = 3.5 \text{ x } 10^{-10} \text{ Torr L/s } \text{cm}^2 \text{ for P355N}^{**}$
 - \circ q₁₀ = 2.3 x 10⁻¹⁰ Torr L/s cm² for 304L**
- Internal coatings to reduce water outgassing
- External coatings to prevent corrosion and provide protection

^{*} J Fedchak et al., "Outgassing studies of A36 Mild Steel," AVS 69 conference, 2023.

^{**} I Wevers, ""Vacuum measurements of materials and coatings for GWD beampipes," Beampipes for Gravitational Wave Telescopes, CERN conference, 2023.

Vacuum System Challenges (II): Elimination of high temperature water bakeouts

- Low temperature H_2O bake experiments (<100°C) desirable
 - High temp H₂O bakeout (~200°C) very costly (equipment, labor, time)
 - Livingston Tube Recovery EXperiment (LTREX)
- Ultra-high-purity dry air backfill experiments
 - UHP dry air backfill to remove water in low conductance system (e.g. pulse-purging in semiconductor gas systems)
 - To be performed with LTREX
 - Vapor Outgassing & Reexposure Test EXperiment (VORTEX)
- Traveling induction heater to remove water
 - To be performed on mild steel pipe, pre-prototype of CE beamtube

RF induction heating: Magnetic properties of mild steel make it more appealing for RF heating.

AVS 69, VT-TuM-12: Exploring Large Vacuum Systems at LIGO

LTREX: 7.5 m long, 1.2 m diameter, 3 mm wall thick residual section of iLIGO beamtube, matches BT surface properties, used to explore emergency venting/recovery protocols at LIGO.

VORTEX: Table top experiment to investigate material outgassing.

Summary

- LIGO & Cosmic Explorer
 - Several vacuum system challenges in creating 3rd gen gravitational-wave detectors
- Studies on alternative beamtube materials
 - Manufacturing costs significantly reduced with mild steel (gas pipeline)
 - Studies on mild steel show low intrinsic hydrogen content than SST and water outgassing levels comparable to SST
- Elimination of high temp water bakeouts
 - Costs of vacuum system greatly reduced with low temp bakeouts
 - UHP dry air backfill experiments underway
 - In design process of traveling induction heater experiments

Feedback and sharing any experience that can inform us are welcome!

Reference Talks

For reference, please see the following **talks**:

- VT-MoA-9: "Outgassing Studies of A36 Mild Steel," *James Fedchak*, E. Newsome, D. Barker, S. Eckel, J. Scherschligt, NIST-Gaithersburg
- INVITED VT-TuM-10: "Exploring the Gravitational Wave Universe: Vacuum Systems for LIGO A+ and Beyond," *Michael Zucker*, LIGO Laboratory, Caltech and MIT

Thank you!

Thank you for your attention!

Questions?

References

- [1] LIGO website: https://www.ligo.caltech.edu/
- [2] CE website: https://cosmicexplorer.org/
- [3] CE will consist of two 40 km arms: hard close GV's every 10 km and soft close GV's every 2 km. Same beamtube geometry as LIGO: 48" diameter, but 0.5" thick.
- [4] Chongdo Park, Taekyun Ha, Boklae Cho; Thermal outgassing rates of low-carbon steels. J.
 Vac. Sci. Technol. A 1 March 2016; 34 (2): 021601. <u>https://doi.org/10.1116/1.4936840</u>
- [5] Park, C., Kim, S.H., Ki, S., Ha, T., Cho, B. Measurement of Outgassing Rates of Steels. J. Vis. Exp. (118), e55017, doi:10.3791/55017 (2016). <u>https://doi.org/10.3791/55017</u>
- [6] J. Fedchak JVST B 39 024201 (2021). <u>https://doi.org/10.1116/6.0000657</u>
- [7] "<u>Vacuum measurements of materials and coatings for GWD beampipes</u>," Ivo Wevers, Beampipes for Gravitational Wave Telescopes 2023, CERN conference.

[8]