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Abstract

The Response Function of the LIGO Interferometer is central to reconstructing the strain produced by incoming
gravitational waves. A function of the interferometer’s response to external stimuli, the Response Function is both
analytically modeled and experimentally measured using excitations from the photon calibrator system at discrete
frequencies. The uncertainty in each data point is propagated to the residual of the model and measurements, with
both the uncertainty and residual being interpolated over a broadband frequency range. While valid, interpola-
tion methods lack the accuracy to estimate measurement uncertainty at non-measured frequencies that fitting an
analytical transfer function could provide. This project analyzes the results of fitting a series of transfer functions
to the Response Function using Bayesian statistics as opposed to traditional transfer-function-fitting methods. We
use data gathered from the OMC DCPD S2300004 whitening chassis at discrete frequency points, varying the
Signal-to-Noise Ratio as a proxy for varying the uncertainty in the measurements, and compare the results of each
method.
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1 Introduction

This introduction provides critical background to this project as well as a summary of this project as a whole. We

introduce the LIGO interferometer in addition to the Differential Arm control loop and discuss the application of

Gaussian Process Regression to the Response Function. We also give a summary of this report, briefly discussing each

section and the overall conclusion of the project.

1.1 Background

The most important data the LIGO interferometer is used to measure is the ”strain” of external stimuli on the test

masses in each arm of the interferometer, calculated using the equation

h =
∆Lfree

L
=

∆Lx −∆Ly

L
(1)

where h is the strain in question, ∆Lfree is the total displacement of the arms in meters, L is the length of the arms

(4 km), and ∆Lx and ∆Ly are the displacements of the x and y arms, respectively (see Figure 1 for a diagram of the

LIGO Interferometer). Strain data is extremely important because it is the primary component in confirming binary

collisions and other astrophysical inferences. As such, gathering accurate strain data is critical. In order to confirm

the validity of the measured strain values, the interferometer employs a photon calibrator system (Pcal) in which

radiation pressure from accessory lasers produces a directly observable strain on the interferometer. The physical Pcal

displacement is calculated using equations relating the radiation pressure to the movement of the test masses and is

confirmed using measurements of the total response of the interferometer.
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Figure 1: Conceptual diagram of the LIGO Interferometer. The pre-stabilized laser is sent through multiple resonant
cavities before being split and sent into the two main Fabry-Perot cavities. The light then rejoins at the beamsplitter,
interfering as a result of the oscillations of the end test masses, is sent through a final cavity, and is split and read
into two photodiodes. For a more detailed description of the interferometer, see [1]

The interferometer is modelled by three different systems that compose the complete response of the interferometer:

the Sensing Function (C), the Digital Filter (D), and the Actuation Function (A) (see Figure 2 for a model of

the Differential Arm – DARM – Loop). Forming an open feedback loop, the Sensing Function records the residual

displacement of the test masses, defined as ∆Lres = ∆Lfree − ∆Lctrl, where ∆Lfree is the total displacement of the

test masses and ∆Lctrl is the control displacement produced by electromagnetic actuators to suppress ∆Lfree. The

Sensing Function then produces a digital error signal derr which the Digital Filter subsequently converts to a digital
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control signal dctrl. This Actuation Function then reads the control signal and produces an actuation displacement

∆Lctrl to suppress ∆Lfree. The composition of these three systems is represented by the Response Function, the entire

interferometer’s response to external stimuli. This Response Function is given by the equation

R =
1 +ADC

C
(2)

where R is the Response Function model and A,D, and C are the Actuation Function, Digital Filter, and Sensing

Function models, respectively. The strain incident on the interferometer is directly related to the Response Function

through the relationship

h =
R ∗ derr

L
(3)

where R is the Response Function model, derr is the digital error signal produced by the Sensing Function, and L is

the length of the interferometer’s arms (4 km). This equation displays the importance of forming an accurate model

of the Response Function. For a detailed explanation of the systems composing the interferometer and the Response

Function, see [1].

Figure 2: Conceptual diagram of the Differential Arm (DARM) Loop. For a detailed description of the DARM Loop,
see [1]
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The Response Function is measured using the Pcal system, inserting an excitation into the DARM loop, xPcal, that

is propagated to DARM displacement, ∆LPcal and measuring the DARM loop error signal, derr. By measuring the

transfer functions of the Sensing and Actuation functions through injections of ∆LPcal at discrete frequencies, the

Response Function measurements are reconstructed. A further explanation on the Sensing and Actuation Functions

is given in [1]. Because these measurements are reconstructed at discrete frequencies, methods are used to interpolate

the measured data over the frequency band. One very prominent interpolation method, Gaussian Process Regression

(GPR), is currently utilized by the LIGO Scientific Collaboration (LSC) in data analysis. A statistical distribution

of Response Function measurements constructed with GPR is used to calculate the systematic error in the Response

Function, defined by R(meas)

R(model) . The median, 16th, and 84th percentiles of the systematic error distribution are then

graphically displayed (see Figure 6). For more information on Gaussian Process Regression, see [2].

While viable, Gaussian Process Regression has shown a few important flaws, particularly, quoting Ethan Payne,

the ”mean model for Gaussian process cannot fit transfer function-like behavior,” and the ”measurements are not

Gaussian distributed.” These and more details concerning the flaws of GPR are discussed in his presentation, [3]. In

this paper, we seek to examine an alternate data interpolation method in the attempt to account for the flaws in GPR

and improve data analysis techniques used in the Calibration group. We test a python script denoted BayesianTF [4]

that utilizes Bayesian statistics to create a distribution of transfer function fits directly to any set of transfer function

measurement data, avoiding the many intermediate steps involved in GPR. We gather transfer function data from a

spare OMC DCPD whitening chassis [5] and use both BayesianTF and the current standard transfer-function-fitting

script IIRRational [6] to create fits for the data. By comparing the results of this new transfer-function-fitter to those

of IIRRational, we roughly determine the accuracy of BayesianTF and present potential benefits the application of

BayesianTF to the Response Function could produce.

1.2 Summary

In this project, we begin by gathering measurement data from a spare OMC DCPD whitening chassis. This data

is both used to characterize the whitening chassis for active use in the interferometer as well as to test the transfer-

function-fitters IIRRational and BayesianTF. We discuss the different strategies for gathering both transfer function

and noise data from the whitening chassis, including a brief discussion on the measurement uncertainty calculations

generated by unique scripts written for this project. We also discuss scripts written to confirm the accuracy of the

gathered noise data.
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We then analyze each transfer-function-fitter, with a brief description of the code and functional differences between

the two. We also display and examine Bode plots of the resulting transfer function fits from each fitting method. We

describe the potential benefits and pitfalls each fitting method displays based on these Bode plots.

Finally, we end this paper with a discussion of the final results of the project. In particular, we conclude that

BayesianTF is an accurate transfer-function-fitter that, due to its consideration of measurement uncertainty, gen-

eration of error-bars, and overall excellence with high measurement uncertainty data sets, is a valid candidate for

application to the interferometer’s Response Function. We also find that the rough limit for BayesianTF’s application

is data sets with an SNR of ∼ 103 and that the rough limit for IIRRational’s application is similarly between SNR

∼ 104 and ∼ 103. Given that the limit points of each fitting method are not precisely defined, further research and

experimentation with BayesianTF and IIRRational on data with Signal-to-Noise Ratios between 103 and 104 should

be conducted. The results of this project may also be utilized in further research by the LIGO Calibration team on

BayesianTF’s application to the Response Function.
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2 Methodology

This section details the techniques utilized in this project. We begin with a detailed explanation on the collection of

data used to test the transfer-function-fitters IIRRational and BayesianTF. This subsection includes details concerning

the physical collection of data and scripts used to validate the data. We then explain the data analysis techniques used

to examine the results of each method. This subsection includes breakdowns of each method, including the functions,

differences from the other, and the output when given input data. This section then discusses final results of this

project, centering around the effectiveness of BayesianTF and its potential application to the Response Function.

Finally, this section concludes with the future endeavors that should be conducted following this project.

2.1 Data Collection

Measurement data is gathered from a spare OMC DCPD S2300004 whitening chassis and is used to test the

effectiveness of BayesianTF as compared to IIRRational. The whitening chassis is designed as a 1:10 filter using the

zeros-poles-gain transfer function model. As such, the theoretical zeros, poles, and subsequent Bode plot displaying the

transfer function are known a priori, allowing the effectiveness of each transfer-function-fitter to be accurately analyzed.

Transfer function data is gathered from the whitening chassis using swept-sine measurements (see subsubsection 2.1.1)

at varying input voltages, the data set with the highest input voltage being the most accurate with the highest

Signal-to-Noise Ratio. Noise data from the whitening chassis is also collected using Fast-Fourier Transforms (see

subsubsection 2.1.2) and used both to calculate the SNR of each measured data point as well as calculating the

measurement uncertainty contained in each data set (see appendix A). In this subsection we describe the intricacies

of gathering both the transfer function and noise data from the whitening chassis.

2.1.1 Transfer Function Data

The transfer function data was gathered from the whitening chassis using the SR785 Dynamic Signal Analyzer and

its Accessory Suite (displayed in Figure 7). The Accessory Suite serves to change the singular ouptut of the SR785

into a differential, alternating current output. This differential output is sent through the whitening chassis and fed

back into the SR785, where the Bode plot of the whitening chassis’s transfer function is displayed. The whitening

chassis is set up to be a device under test using the Chassis Schematic Print (displayed in Figure 8). For instance,

when testing channel A of the whitening chassis, coaxial cables would connect the differential output of the Accessory

Suite to the A+ and A- pins on the Preamp Chamber Interface on the Front Panel of the whitening chassis. Coaxial

cables would also connect the subsequent differential output of the whitening chassis to the input of the SR785. For
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a picture of the whitening chassis as a device under test, see Figure 9. The SR785 uses a swept-sine measurement

to send a series of input signals at a constant amplitude but varying frequencies. For this experiment in particular,

the data was collected at 200 frequency points ranging from 0.1Hz to 102.4 kHz. The resulting data contains the

shifts in the magnitude and phase of the signal that are caused by the whitening chassis. This transfer function data

was collected for both Whitening ON and Whitening OFF configurations of each Channel of the whitening chassis at

varying input voltages: 1Vpk, 0.5Vpk, 0.1Vpk, 10mVpk, 1mVpk, and 0.1mVpk. The reasoning behind collecting

the data at varying input voltages is explained in subsubsection 2.1.2 when discussing the Signal-to-Noise Ratio.

2.1.2 Noise Data

The noise data of the whitening chassis is also gathered with the SR785 but using a Fast-Fourier Transform (FFT)

as opposed to a swept-sine measurement. Using a similar setup for the whitening chassis, the input pins are short-

circuited to each other rather than being connected to the SR785 to reduce the effect of floating input voltages. The

noise floor of the SR785 is then gathered by taking FFT measurements with the whitening chassis turned completely

off. Similarly, the noise floors of the Whitening ON and Whitening OFF configurations of both Channels of the chassis

are gathered by taking FFT measurements with the chassis turned on. These Fast Fourier Transform measurements

were taken at varying intervals: 0.5Hz to 400Hz, 4Hz to 3.2 kHz, and 32Hz to 25.6 kHz. This detail becomes critical

in analyzing the transfer-function-fitting methods, as due to each FFT being taken at differing frequency intervals, the

total amount of noise will differ depending on which FFT interval the data was taken within. Importantly, this means

that data points at high frequency values with contain more noise data than those points at low frequency values. In

order to confirm the noise data was gathered correctly, we created plots overlaying the measured noise data and noise

data from the S2300003 whitening chassis previously gathered by Jeff Kissel [7]. These plots, as well as full details

containing the complete characterization of the OMC DCPD S2300004 whitening chassis may be found in [8].

The noise data is critical to the application of the transfer function data to BayesianTF, as BayesianTF, relying on

Bayesian statistics, requires measurement uncertainty in the data in order to function. The noise data allows for the

Signal-to-Noise Ratio, calculated with
V(signal)

V(noise)
, and subsequent measurement uncertainty to be gathered. Notice that

by varying the input signal voltage, the SNR may be modified as needed, as the noise voltage remains roughly static.

This is critical to testing BayesianTF, as utilizing data sets with varying SNR’s allows for an accurate assessment of

BayesianTF’s ideal SNR range and possibly even the SNR at which BayesianTF begins to fail. In order to calculate

the Signal-to-Noise Ratio (SNR) of each data point, more FFT measurements were taken to span the 0.1Hz to

102.4 kHz frequency band at which the transfer function data was gathered. The data sets for Channel A Whitening
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ON were then appended together, and the data points for the set with the smaller range were utilized in the case of

overlapping data points. The noise data was then interpolated using Python, and noise data corresponding to the

particular frequency points at which the transfer function data was gathered was retrieved.

In order to calculate the uncertainty present in the measurements, equations relating the Signal-to-Noise Ratio to

the coherence between the input and output signals and relating the subsequent coherence to measurement uncertainty

are utilized. For a detailed breakdown of the equations used to calculate measurement uncertainty, see appendix A.

We wrote Python scripts to use the interpolated noise data to calculate the measurement uncertainty for each data

point and create a new file containing transfer function data with the frequency, magnitude, phase, and newly acquired

measurement uncertainty. In particular, one function calculated the SNR, coherence, and measurement uncertainty of

each data point in a particular data set (Uncertainty Measurements.py), and the other script called the function and

appended the data to a new file (Transfer Function Data with Uncertainty.py). Both of these files may be found in a

GitLab repository [9].

2.2 Data Analysis

In this subsection, we give a short description of the design and function of each transfer-function-fitting method in

addition to present the results of each method. We particularly use data gathered for Channel A ”Whitening ON,”

as Channel A and B are interchangeable and the Whitening ON configuration provides the necessary amount of data

to analyze the methods. The 1V input data set, along with the 1V IIRRational transfer function fit, is considered

the standard to which the transfer function fits to all other data sets will be compared. This specific data set and

fit is the standard due to the extremely high SNR and subsequent nonexistent measurement uncertainty at which

it was gathered. Each script produces an array of complex points modelling the transfer function of the whitening

chassis. As such, the residuals between the standard 1V input transfer function fit produced by IIRRational and all

the transfer function fits of other sets of data may be constructed and analyzed.

2.2.1 IIRRational

The IIRRational code is the current standard transfer-function-fitter used in the LSC. As such, the IIRRational

results from the data set with the lowest measurement uncertainty are extremely accurate with a residual of approxi-

mately unity. IIRRational itself fits a polynomial composed of zeros in the numerator and poles in the denominator

to measured transfer function data. Using data analysis techniques for control systems, the transfer-function-fitter are

able to fit high-order transfer function polynomials. In addition, IIRRational does take the SNR into account in order
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to calculate residuals between the measurements and noise data. The code excels in its adaptability and versatility,

being known for its accuracy with high SNR data. For presentations detailing the functionality of IIRRational in more

detail, see [10], [11], and [12].

We used a modified version of IIRRational to generate transfer function fits to each of the data sets. The resulting

fits for the Channel A Whitening ON 1V, 0.1mV, 0.05mV, and 0.01mV data sets are shown in Figures 10 – 13.

The left plots in the figures are Bode plots displaying the transfer function data and resulting IIRRational transfer

function fit, with the upper-left plot displaying the Magnitude and the lower-left plot displaying the Phase. The right

plots in the figures are also Bode plots displaying the residuals between the data and resulting fit. The increasing

chaos and deviation from unity in the residuals as the input voltage decreases shows the difficulties present in fitting a

transfer function to high measurement uncertainty data without already knowing the theoretical transfer function. In

this case, the transfer function of the whitening chassis is known a priori ; however, the zeros-poles-gain model of the

Response Function is not known a priori, so the fit generated by IIRRational in such situations cannot be considered

definitive. The inaccuracy of IIRRational in these high measurement uncertainty scenarios is exemplified by Figure

14, in which the residuals between the 0.1mV, 0.05mV, and 0.01mV fits and the standard 1V fit are displayed. The

more the residual between a specific fit and the standard strays from unity, more inaccurate that specific fit is. Note

that the tail end of the residuals stray from unity to such an extent due to the increased amount of noise data in the

high frequency range due to the construction of the FFT measurements used to gather the noise data. As shown,

the residual for the 0.01mV fit, the most important fit of the group due to its extremely low SNR/high measurement

uncertainty, strays significantly from unity. This residual in particular implies that IIRRational is not reliable in

generating a definitive, accurate transfer function fit for data with high measurement uncertainty.
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Figure 3: Overlaid residuals between the 0.1mV, 0.05mV, 0.01mV and 1V IIRRational transfer function fits. The
top plots show Magnitude. The bottom plots show Phase. Left plots show each transfer function fit generated by
IIRRational. Right plots show the residuals between each fit and the standard 1V fit.
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2.2.2 BayesianTF

The BayesianTF code utilizes Bayesian statistics to create a posterior distribution of transfer function curves char-

acterizing any system that may be modelled by a transfer function. Utilizing a uniform distribution of parameters

as priors, BayesianTf searches through the parameter space to find the parameter values that best match the mea-

surement data. With a predetermined Gaussian likelihood function and the massive parameter space, BayesianTF

constructs the posterior distribution of transfer function curves from the peaks of the distributions of each parameter

following the inclusion of the likelihood of the data given the parameters. In addition, BayesianTF uses a residue-pole

transfer function mode as opposed to the traditional zeros-poles-gain model used by IIRRational in order to enhance

the speed of the code by reducing the complexity in the transfer function form. A complete explanation of the residue-

pole transfer function model is found in [13]. BayesianTF takes the number of poles as a user input, fitting a transfer

function to the user’s specified number of poles. More analytical poles in the transfer function model inevitably results

in a more accurate fit to the data at the cost of increased computing power. As such, using BayesianTF multiple

times with an increasing number of poles on a specific set of data results in a distribution of increasingly complex

distributions of transfer function fits. The evidence of each fit distribution may be compared to the evidences of the

other fit distributions, allowing for the best fit distribution to be determined.

The same sets of data used to generate fits with IIRRational were then used to generate fits with BayesianTF.

Because BayesianTF is designed specifically for data with high measurement uncertainties, the 0.01mV and 0.1mV

data sets were specifically selected for testing. For the 0.01mV data set (average SNR of 113), BayesianTF generated

fits for transfer functions with 2, 3, and 4 poles with the poles-residue model. For the 0.1mV data set (average SNR

of 1131), BayesianTF generated fits for transfer functions with 2 and 4 poles with the pole-residue model. Bode plots

showing the BayesianTF and IIRRational transfer function fits for each data set overlaid with the measurement data

are displayed in Figures 15 – 18. All of the BayesianTF fits for the 0.01mV data seem very accurate to the eye, but

further examination of plots of the residuals between the BayesianTF fits and standard 1V IIRRational fit (displayed

in Figures 5 and 19 – 20) reveal that the most accurate BayesianTF fit is the 3 pole transfer function model fit

(displayed in Figure 4). This result is consistent with the designed whitening chassis transfer function. Plots of the

residuals for the 0.1mV data set are displayed in Figures 21 – 22 and further examined in section 2.3 along with the

plots of the fits themselves.
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Figure 4: Bode plot showing the comparison between the 3-pole BayesianTF fit and IIRRational fit for the 0.01mV
input data set. The top plot displays the Magnitude and the bottom plot displays the Phase. The measured data
with measurement uncertainty is overlaid in blue. Error bars for the IIRRational fit are constructed with the 5th and
95th percentile fits from the posterior distribution.

16



Figure 5: Bode plot showing the residuals between the 3-pole BayesianTF fit and IIRRational fit for the 0.01mV input
data set with the standard 1V IIRRational fit. The top plot displays the Magnitude and the bottom plot displays
the Phase. The measured data with measurement uncertainty is overlaid in blue. The error bars for the BayesianTF
residual are constructed with the 5th and 95th percentile residuals from the posterior distribution of residuals.

2.3 Results

Finally, BayesianTF has enormous potential to be a valid replacement to Gaussian Process Regression in con-

structing a fit for the interferometer’s Response Function. The bode plots overlaying the best fit distribution from
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BayesianTF and the fit from IIRRational for each data set shows the flexibility of the BayesianTF fits at extremely

low SNR’s. Specifically viewing the 0.01mV input voltage data set, the residual between the median BayesianTF

fit and the standard 1V IIRRational fit deviates from unity slightly more than the 0.01mV IIRRational fit in cer-

tainty frequency ranges. However, the 90th percentile error bars always spans unity, meaning that the fit closest to

unity, the best fit, is contained in the BayesianTF fit distribution. In contrast, the single IIRRational fit is not close

enough to unity to justify the lack of measurement uncertainty in the fit. As such, BayesianTF is a significantly

better transfer-function-fitter than IIRRational in low SNR/high measurement uncertainty scenarios. In addition,

BayesianTF’s implementation of error bars is extremely useful for its potential application to the Response Function.

Because the Response Function data is often gathered at an SNR less than or equal to 10, the measurement uncertainty

is high enough that error bars are essentially critical to the accurate estimation of the transfer function. BayesianTF’s

usefulness is refined even further by the accuracy of its results in this test using a filter designed with a specific, known

transfer function.

The other noteworthy result is the evaluation of the points at which each transfer-function-fitter begins to fail. As

demonstrated with Figure 14, IIRRational begins to fail significantly at some point between SNR ∼ 103 and SNR

∼ 102. Similarly, BayesianTF also begins to fail at an SNR of ∼ 103, as shown by its inability to accurately fit the

0.1mV data set. The 2-pole fit shown in Figure 17 is obviously completely incorrect, and the 4-pole fit shown in

Figure 18, while rather accurate, is more inaccurate than any of the 0.01mV fits and reaches the peak of a reasonable

computing time. For these reasons, BayesianTF should not be applied to data sets with an average SNR of above

∼ 103; BayesianTF should ideally be applied to data sets with an average SNR of between ∼ 102 and ∼ 1. This

limit on BayesianTF is a result of the design of the code, as BayesianTF functions by searching for a peak in the

massive, high-dimensional parameter space to fit the data. In high SNR scenarios, the region of the parameter space

corresponding to the posterior becomes to narrow to be sufficiently found, and BayesianTF fails. While this is a pitfall

of BayesianTF, its effectiveness with high measurement uncertainty data sets is critical to its potential application

to the Response Function. Because the Response Function data is usually gathered at an SNR of between ∼ 10 and

∼ 1, the application of BayesianTF to better estimate the uncertainty and systematic error present in the Response

Function might not only be valid but an overall more accurate method than Gaussian Process Regression.

In conclusion, BayesianTF is an accurate transfer-function-fitter in low SNR/high measurement uncertainty sce-

narios as shown in the comparison with the currently accepted transfer-function-fitter, IIRRational. The benefit of

including error-bars also makes BayesianTF a valid candidate for application to the interferometer Response Function,

which is critical to confirming accurate strain data used in astrophysical inference.
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2.4 Future Goals

This project may be furthered in quite a few places. For instance, we could only gather the rough SNR limit on

BayesianTF and IIRRational. Further experimentation and analysis using data sets between an SNR of ∼ 104 and

∼ 103 should be conducted to determine the exact point at which each transfer-function-fitting method breaks down.

In addition, an analytical determination of BayesianTF’s effectiveness, such as a reduced chi-squared statistic, could be

applied to more accurately compare BayesianTF to IIRRational. Importantly, BayesianTF should be compared with

Gaussian Process Regression using the same data sets as in this project in order to determine whether BayesianTF

could be the best application to estimate the uncertainty and systematic error in the Response Function. Finally,

general analysis and updates to the BayesianTF method itself should be conducted in the hopes of being utilized for

the Response Function.
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A Measurement Uncertainty Calculations

In order to calculate the measurement uncertainty in the transfer function data gathered using the SR785, we had

to calculate the Signal-to-Noise Ratio (SNR) of each measurement in each data set. The relevant equations used for

this process are:

SNR =
Psignal(f)

Pnoise(f)
(4)

=
Vsignal(f)

Vnoise(f)
(5)

where Psignal and Vin are the power and voltage, respectively, of the input signal and Pnoise and Vnoise are the power

and voltage, respectively, of the noise signal. The SNR is then used to calculate the coherence between the input and

output signals with SNR = C(f)
1−C(f) , as the input signal is completely coherent with itself and the noise is completely

incoherent with the input signal. From here, the coherence may be derived and used to further derive the uncertainty

in each measurement with

C(f) =
SNR

1 + SNR
(6)

σ(f) =

√
1− C2(f)

2NavgC2(f)
(7)

where C(f) is the coherence between the input and output signals, σ(f) is the measurement uncertainty of each data

point, and Navg is the number of data points averaged per discrete frequency [1].
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B Figures

Figure 6: Bode plot displaying the systematic error in the Response Function. The top plot shows Magnitude and
the bottom plot shows Phase. Each of the red dots are data points from a swept sine measurement on the Response
Function. The solid and dashed lines represent the median, 16th, and 84th percentiles, respectively, of the distribution
of transfer functions created with Gaussian Process Regression. For a detailed description of this plot and the use of
GPR in its creation, see [1]
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Figure 7: Picture of SR785 Dynamic Signal Analyzer (bottom) and Accessory Suite (top) during Data Collection
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Figure 8: Annotated OMC DCPD Chassis Schematic Print. Focus particuarly on the Preamp Chamber Interface
Front Panel and To AA/ADC Whitening Output To: Rear Panel sections of the schematic. See [14] for the original
whitening chassis schematic.
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Figure 9: Picture of OMC DCPD S2300004 Whitening Chassis during Data Collection
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Figure 10: IIRRational transfer function fit and residual for the 1V input data set. The top plots show Magnitude.
The bottom plots show Phase. Left plots show the transfer function data overlaid with the generated fit. Right plots
show the residual between the data and fit.
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Figure 11: IIRRational transfer function fit and residual for the 0.1mV input data set. The top plots show Magnitude.
The bottom plots show Phase. Left plots show the transfer function data overlaid with the generated fit. Right plots
show the residual between the data and fit.
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Figure 12: IIRRational transfer function fit and residual for the 0.05mV input data set. The top plots show Magnitude.
The bottom plots show Phase. Left plots show the transfer function data overlaid with the generated fit. Right plots
show the residual between the data and fit.
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Figure 13: IIRRational transfer function fit and residual for the 0.01mV input data set. The top plots show Magnitude.
The bottom plots show Phase. Left plots show the transfer function data overlaid with the generated fit. Right plots
show the residual between the data and fit.

30



Figure 14: Overlaid residuals between the 0.1mV, 0.05mV, 0.01mV and 1V IIRRational transfer function fits. The
top plots show Magnitude. The bottom plots show Phase. Left plots show each transfer function fit generated by
IIRRational. Right plots show the residuals between each fit and the standard 1V fit.
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Figure 15: Bode plot showing the comparison between the 2-pole BayesianTF fit and IIRRational fit for the 0.01mV
input data set. The top plot displays the Magnitude and the bottom plot displays the Phase. The measured data
with measurement uncertainty is overlaid in blue. Error bars for the IIRRational fit are constructed with the 5th and
95th percentile fits from the posterior distribution.
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Figure 16: Bode plot showing the comparison between the 4-pole BayesianTF fit and IIRRational fit for the 0.01mV
input data set. The top plot displays the Magnitude and the bottom plot displays the Phase. The measured data
with measurement uncertainty is overlaid in blue. Error bars for the IIRRational fit are constructed with the 5th and
95th percentile fits from the posterior distribution.
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Figure 17: Bode plot showing the comparison between the 2-pole BayesianTF fit and IIRRational fit for the 0.1mV
input data set. The top plot displays the Magnitude and the bottom plot displays the Phase. The measured data
with measurement uncertainty is overlaid in blue. Error bars for the IIRRational fit are constructed with the 5th and
95th percentile fits from the posterior distribution.
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Figure 18: Bode plot showing the comparison between the 4-pole BayesianTF fit and IIRRational fit for the 0.1mV
input data set. The top plot displays the Magnitude and the bottom plot displays the Phase. The measured data
with measurement uncertainty is overlaid in blue. Error bars for the IIRRational fit are constructed with the 5th and
95th percentile fits from the posterior distribution.
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Figure 19: Bode plot showing the residuals between the 2-pole BayesianTF fit and IIRRational fit for the 0.01mV
input data set with the standard 1V IIRRational fit. The top plot displays the Magnitude and the bottom plot
displays the Phase. The measured data with measurement uncertainty is overlaid in blue. The error bars for the
BayesianTF residual are constructed with the 5th and 95th percentile residuals from the posterior distribution of
residuals.
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Figure 20: Bode plot showing the residuals between the 4-pole BayesianTF fit and IIRRational fit for the 0.01mV
input data set with the standard 1V IIRRational fit. The top plot displays the Magnitude and the bottom plot
displays the Phase. The measured data with measurement uncertainty is overlaid in blue. The error bars for the
BayesianTF residual are constructed with the 5th and 95th percentile residuals from the posterior distribution of
residuals.
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Figure 21: Bode plot showing the residuals between the 2-pole BayesianTF fit and IIRRational fit for the 0.1mV input
data set with the standard 1V IIRRational fit. The top plot displays the Magnitude and the bottom plot displays
the Phase. The measured data with measurement uncertainty is overlaid in blue. The error bars for the BayesianTF
residual are constructed with the 5th and 95th percentile residuals from the posterior distribution of residuals.
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Figure 22: Bode plot showing the residuals between the 4-pole BayesianTF fit and IIRRational fit for the 0.1mV input
data set with the standard 1V IIRRational fit. The top plot displays the Magnitude and the bottom plot displays
the Phase. The measured data with measurement uncertainty is overlaid in blue. The error bars for the BayesianTF
residual are constructed with the 5th and 95th percentile residuals from the posterior distribution of residuals.
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