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ABSTRACT

With no binary neutron star (BNS) merger detected during the first half of the fourth observing run (O4) of the LIGO-Virgo-KAGRA
(LVK) network, despite a roughly doubled time-volume surveyed with respect to the end of O3, a pressing question is how likely the
detection of at least one BNS merger is in the remainder second half of the run, due to start in a few months. I present here a simple
and general method to address such a question, which constitutes the basis for the predictions to be presented in the LVK Public Alerts
User Guide.

1. Poisson probability informed by previous
occurrences of a rare event

The derivation here is essentially identical to that presented in
Appendix B of Ray et al. (2023), and the result coincides with
Eq. 42 in Essick (2023) in a particular case.

Let N be the a number of occurrences of a rare event over a
period of time T , and let λ be the expected number of events, that
is, the average occurrence rate multiplied by T . The probability
of N given λ is the Poisson probability

p(N | λ) =
λN exp(−λ)

N!
. (1)

Now let N′ be a number of previously observed events over a dif-
ferent time period T ′, over which the expected number of events
was λ′, with C = λ/λ′. The posterior probability on λ′ given N′
can be written through Bayes’ theorem as

p(λ′ |N′) =
p(N′ | λ′)π(λ′)

p(N′)
=
λ′N

′

exp(−λ′)
N′!

π(λ′)
p(N′)

, (2)

where π(λ′) is the prior probability on λ′. We opt to parametrize
this as

π(λ′) =
(

p(N′)N′!
Γ(N′ + 1 − α)

)
λ−α, (3)

where Γ(x) is the Gamma function and the factor in parenthe-
ses ensures the correct normalization of the posterior. With this
definition, α = 0 corresponds to a uniform prior, α = 1/2 to
the Jeffreys prior for the Poisson probability, and α = 1 to a
uniform-in-logarithm prior.

These definitions allow us to derive the posterior probabil-
ity on N given the previously observed number of events N′, as
follows. The starting point is

p(N |N′) =
∫

p(N | λ)p(λ |N′) dλ =

=

∫
p(N | λ)

∫
p(λ | λ′)p(λ′ |N′) dλ′ dλ. (4)

Noting that p(λ | λ′) = δ(λ−Cλ′), where δ is the Dirac delta, this
leads to

p(N |N′) =
Cα−N′−1

Γ(N′ + 1 − α)

∫
p(N | λ) exp

(
−
λ

C

)
λN′−α dλ. (5)

Substituting Eq. 1 in the above expression, carrying out the inte-
gral, and using N! = Γ(N + 1), we finally obtain

p(N |N′, α,C) =
Γ(N + N′ + 1 − α)
Γ(N + 1)Γ(N′ + 1 − α)

CN

(1 + C)N+N′+1−α , (6)

where the dependence on the prior index α and the expected
number ratio C has been made explicit.

2. Application to compact binary mergers

For a gravitational wave detector network whose range does not
extend to large redshifts, the cosmic evolution of the population
and cosmological effects can be neglected, so that the expected
number of detections over an observing run of duration T can be
expressed simply as λ = R0VT , where R0 is the local rate density
of compact binary mergers and V is the effective volume over
which the network is sensitive to such sources. In this context,
the ratio λ/λ′ is then simply the ratio of the effective sensitive
time-volume of the run to that of past runs, namely

C =
VT∑npast

l=1 VlTl
, (7)

where l runs over past observing runs. In the following, we de-
scribe a strategy to estimate such ratio using basic information
such as the binary neutron star (BNS) ranges and duty cycles of
the detectors.

2.1. Evaluation of the effective sensitive volume for each run

The ‘optimal’ matched filter signal-to-noise ratio (SNR) of a sin-
gle merger ρopt, assuming that it is dominated by the inspiral part
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of the signal, depends on the chirp mass mc = (m1m2)3/5/(m1 +
m2)1/5 (where m1 and m2 are the gravitational masses of the pri-
mary and secondary components of the binary), the luminos-
ity distance r, and on the detector noise power spectral density
(PSD) curve S( f ) as a function of frequency f through the inte-
gral1 f7/3 =

∫ [
f 7/3S( f )

]−1
d f (Finn & Chernoff 1993), so that

ρopt ∝
m5/6

c

r
f7/3. (8)

The actual SNR ρ in a given detector also depends on the source
position in the detector’s sky (defined e.g. by a pair of spherical
angular coordinates θ, ϕ), its inclination ι with respect to the line
of sight and its polarization angle ψ, all of which can be sum-
marized into a single parameter 0 ≤ w ≤ 1 such that ρ = wρopt
(Finn & Chernoff 1993; Dominik et al. 2015; Chen et al. 2021),
with

w2 =
1
4

F2
+(θ, ϕ, ψ)(1 + cos2 ι)2 + F2

×(θ, ϕ, ψ) cos2 ι, (9)

where F+ and F× are the ‘antenna pattern’ functions that de-
fine the dependence of the detector’s sensitivity on sky posi-
tion and polarization angle. The probability distribution of w
for each detector is completely specified under the assumption
of isotropic sky positions and binary orbital plane orientations.
Since w ≤ 1, and given the dependencies in Eq. 8, for each de-
tector there exists a ‘horizon’ distance dh(mc) ∝ m5/6

c f7/3 such
that ρopt(r = dh) = ρlim, where ρlim is a minimum SNR required
for a detection. This represents the distance beyond which a bi-
nary with a chirp mass mc cannot be detected. Hence, for a given
binary, one can write the SNR in the i-th detector of a network
as

ρi = wiρlim
dh,i

r
, (10)

and the squared ‘network SNR’ in an n-detector network as

ρ2
net =

n−1∑
i=0

ρ2
i = w2

0ρ
2
lim

d2
h,0

r2

1 + n−1∑
i=1

(
wi

w0

)2 (
dh,i

dh,0

)2
 . (11)

For each detector, the ratio between the horizon distance dh,i
and the BNS ‘range’ R is fixed (Chen et al. 2021), and hence
dh,i/dh,0 = Ri/R0.

Let us now represent the detection as a threshold on the net-
work SNR ρnet ≥ ρlim. In other words, let us define the detection
probability of a binary merger as

pdet = Θ (ρnet − ρlim) , (12)

where Θ is the Heaviside step function. The effective sensitive
volume of a network, neglecting cosmological effects, is then ob-
tained by integrating the detection probability over volume and
over the binary orientations,

Veff =

&
r2 pdetdr sin θ dθ dϕ

sin ι dι
2

dψ
2π
=

4πd3
h,0

&
x2Θ

(
ρnet

ρlim
− 1

)
dx

sin θ dθ
2

dϕ
2π

sin ι dι
2

dψ
2π
=

4π
3

d3
h,0

〈
x3

lim

〉
, (13)

1 We neglect here a small additional dependence on the component
masses and possibly on the neutron star matter equation of state, which
together determine the effective inspiral cut-off frequency.

where we defined the dimensionless distance x = r/dh,0 and its
limiting value for detection at fixed sky position and inclination
(which follows from Eq. 11)

xlim(θ, ϕ, ι, ψ) = w0(θ, ϕ, ψ)

1 + n−1∑
i=1

(
wi(θ̃i, ϕ̃i, ι, ψ̃i)
w0(θ, ϕ, ι, ψ)

)2 (
Ri

R0

)2


1/2

.

(14)

In the above expression, (θ̃i, ϕ̃i) and ψ̃i represent the sky posi-
tion and the polarization angle as seen by detector i, as opposed
to (θ, ϕ) and ψ that pertain to the reference detector 0. The av-
erage ⟨x3

lim⟩ is over isotropic sky positions and orientations. We
call such average the ‘geometrical factor’ of the network. This
is related to the ‘peanut factor’ fp defined in Chen et al. (2021)
through fp = ⟨x3

lim⟩
−1/3. For n = 1, ⟨x3

lim⟩
−1/3 = fp = 2.264 is the

usual horizon-to-range ratio (Finn & Chernoff 1993; Chen et al.
2021).

For each pair of detectors i and j, the probability distribution
of the ratio

wi

w j
=

F2
+,i(1 + cos2 ι)2 + 4F2

×,i cos2 ι

F2
+, j(1 + cos2 ι)2 + 4F2

×, j cos2 ι
(15)

depends only on the relative orientations of the two detectors.
Samples of such distribution can be obtained in a simple way by
sampling isotropic sky positions and binary orientations, com-
puting the antenna pattern functions of the two detectors for
each sampled configuration, and constructing the ratio as ex-
pressed in the above equation. The resulting samples of the ratio
can then be used to compute the geometrical factor ⟨x3

lim⟩ with
a Monte-Carlo sum. The horizon dh,0 = 2.264R0(mc/mc,ref)5/6,
where mc,ref = 1.22 M⊙ (Chen et al. 2021) is the reference chirp
mass for which the BNS range is defined. These facts allows us
to compute the effective sensitive volume of a network to a bi-
nary of chirp mass mc by knowing only the detector orientations
and their BNS ranges.

Since the duty cycle of the GW detectors is not 100%, at
any time the GW detector network effectively acts as one of sev-
eral possible sub-networks, depending on which combination of
detectors is online. The formalism outlined above can be used
to compute the effective sensitive volume of each of the sub-
networks, and these can then be combined based on the fraction
of time, in a given observing run, over which that particular sub-
network was operating. From basic combinatorics, the number
of sub-networks (i.e. possible combinations of online detectors)
is

Nc(n) =
n∑

k=1

(
n
k

)
, (16)

where the sum is over n-choose-k Binomial coefficients. For a
3-detector network, this is Nc(3) = 3 + 3 + 1 = 7. For the HLV
network, these seven combinations are H, L, V, HL, LV, VH,
HLV. Let us number the observing runs of the GW detector net-
work by an index l, and denote by nl the number of detectors that
participated in each run. If fl, j is the fraction of run l’s time dur-
ing which only the combination j of detectors was online (the
others being offline or presenting data quality issues), then the
total effective sensitive volume of the run is

Vl =

Nc(nl)∑
j=1

f j,lVeff, j,l =
4π
3

d3
h,0,0,l

Nc(nl)∑
j=1

f j,l

(
R0, j,l

R0,0,l

)3 〈
x3

lim

〉
j,l
, (17)
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Table 1. Run duration, representative BNS ranges of the detectors, and
total effective sensitive time-volume to a BNS with mc = 1.22 M⊙ of
the past GW observing runs, and projections for O4b. The index l is
included to ease the comparison with Eq. 17.

Index Run Duration BNS range VlTl
l (days) (Mpc) (10−3 Gpc3 yr)

H L V
1 O1 130 70 60 – 0.43
2 O2 268 60 85 25 1.5
3 O3a 183 105 135 45 7.7
4 O3b 147 115 135 50 7.4
5 O4a 235 140 150 – 15
6 O4b 297 150 160 50 22

where Ri, j,l is the BNS range of i-th detector of combination j
during run l, and similarly dh,i, j,l is the corresponding horizon
distance.

We note that the ratio of effective sensitive volumes is inde-
pendent of chirp mass, owing to the fact that the single-detector
horizons (which are the only dimensional terms in Eq. 17) all
share the same dependency dh,0,0,l ∝ m5/6

c . This shows that the
detection rate estimate based on Eq. 6 is insensitive to the mass
distribution of the binaries of interest, as long as their SNR is
reasonably well approximated by that of an inspiral of two point
masses.

2.2. Application to BNS and NSBH mergers in O4b

Equation 17 allows us to write the ratio of expected numbers of
BNS mergers C (Eq. 7) as a function of the BNS ranges of the
detectors in each of the run (which we assume constant for sim-
plicity), the durations of the runs, and the sub-network time frac-
tions f j,l. The durations of the runs and the representative BNS
ranges of the detectors that we adopt here are reported in Table
1. These are based on the BNS range plots for each run and each
detector as reported in the observing run summary pages of the
public Gravitational Wave Open Science (GWOSC) website2,
and are representative values close to the peaks of the distribu-
tions of ranges reported there. For O4b, the projected ranges are
based on the plots relative to the weeks preceding the start of
O4b. In order to compute the sub-network time fractions, we
retrieved the list of time segments that pass quality checks for
the search of compact binary coalescences for each detector and
each run from the GWOSC website3. This allowed us to extract
the fraction of each run’s time over which each sub-network was
available. For O4b, we assumed the same fractions as O3b. The
result is reported in Table 2, along with the geometrical factors
computed using the ranges from Tab. 1.

Using the information in Table 2, we obtain C = 0.87. We
note that, if we had evaluated this at the start of O4a, and we were
interested in the ratio of the expected number of BNS merger
detections in O4a to that of the previous runs, we would have
obtained CO4a ∼ 0.85. This implies that the absence of BNS
merger detections in O4a decreases our estimate of the intrinsic
BNS merger rate by a large factor, 1 + CO4a ∼ 1.85.

The left-hand panel in Fig. 1 shows with red squares the
probability p(N |N′, α,C) (Eq. 6) with N′ = 2 and adopting the
Jeffreys prior (i.e. setting α = 1/2), for C = 0.87, hence refer-
ring to the number of BNS merger detections over O4b. The red
squares in the right-hand panel show the probability of a number

2 https://gwosc.org/detector_status/
3 https://gwosc.org/timeline/

Table 2. Fraction of past GW observing run time during which each
sub-network was operational (i.e. was taking data that passes quality
checks for the search of compact binary coalescences) and correspond-
ing geometrical factor ⟨x3

lim⟩ computed using the ranges from Tab. 1.
The indices ( j, l) are included to ease the comparison with Eq. 17.

Index Sub-network Time fraction
〈
x3

lim

〉
j,l

( j, l) f j,l
O1

(1,1) H 0.21⋆ 0.086
(2,1) L 0.13⋆ 0.086
(3,1) HL 0.38 0.19

O2
(1,2) H 0.14⋆ 0.086
(2,2) L 0.125⋆ 0.086
(3,2) V 0.0062⋆ 0.086
(4,2) HL 0.38 0.44
(5,2) VH 0.0064 0.10
(6,2) LV 0.0083 0.095
(2,2) HLV 0.057 0.47

O3a
(1,3) H 0.030 0.086
(2,3) L 0.035 0.086
(3,3) V 0.086 0.086
(4,3) HL 0.14 0.36
(5,3) VH 0.096 0.10
(6,3) LV 0.14 0.097
(7,3) HLV 0.44 0.39

O3b
(1,4) H 0.031 0.086
(2,4) L 0.023 0.086
(3,4) V 0.064 0.086
(4,4) HL 0.16 0.31
(5,4) VH 0.10 0.11
(6,4) LV 0.093 0.10
(7,4) HLV 0.50 0.34

O4a††
(1,5) H 0.15 0.086
(2,5) L 0.15 0.086
(3,5) HL 0.53 0.27

O4b†††
(1,6) H 0.031 0.086
(2,6) L 0.023 0.086
(3,6) V 0.064 0.086
(4,6) HL 0.16 0.26
(5,6) VH 0.10 0.097
(6,6) LV 0.093 0.096
(7,6) HLV 0.50 0.28

†The KAGRA detector is not included for simplicity.
††Based on GWOSC detector status summary for O4a, because the
data segments were not yet available at the time of writing.
†††Sub-network time fractions in O4b are set equal to those of O3b.
⋆These fractions are set to zero in the computation of the effective
sensitive volume of the run, because single-detector triggers were not
considered valid during these runs.

of BNS detections in O4b larger than, or equal to, the number
on the horizontal axis. This shows that the most likely number is
N = 1, and that the probability of at least one detection is around
73% assuming α = 1/2. For α ∈ [0, 1], this probability varies in
the range 71% − 85%. Assuming the O3a duty cycles instead
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Fig. 1. BNS merger detection probability in O4b. The red squares in the left-hand panel show the probability that exactly NO4b BNS mergers are
detected by the LVK network during O4b, based on the number N′ = 2 detected in previous runs, according to Eq. 6 and adopting the Jeffreys prior
(α = 1/2). The blue circles refer to NSBH instead, assuming N′ = 4. In the right-hand panel, the probability of a number of detections N ≥ NO4b
in O4b is shown for the same two classes of sources.

of the O3b ones, decreases these probabilities by approsimately
2%.

The same approach can be applied to neutron star -
black hole (NSBH) mergers, with the caveat that the inspiral-
dominated signal approximation, and the fact that we neglect
cosmological effects, can introduce some (small) systematic
bias. Assuming N′ = 4, which corresponds to the number of
NSBH candidates with a false alarm rate (FAR)) lower than
1/4yr in the GWTC-3 catalog (Abbott et al. 2023) plus the two
high-probability NSBH candidates released as public alerts up to
the end of O4a, and again adopting the Jeffreys prior, we obtain
the results shown by blue circles in Figure 1. Adopting different
priors affects the resulting probability by a few percent.

At any time t after the start of O4b, we can also compute the
probability of at least one detection in the remainder of the run
(of duration T − t). This is obtained from

p
(
N > 0 |N′, α,C(t)

)
=

= 1 − p
(
N = 0 |N′, α,C =

[
1 − t

T

C(0) t
T + 1

]
C(0)

)
=

= 1 −
(
C(0) + 1
C(0) t

T + 1

)α−1−N′

. (18)

Solid lines in Fig. 2 show the resulting probability for three dif-
ferent prior choices, α = 0, 1/2 and 1, keeping N′ = 2. The grey
dashed line shows the result for α = 1/2 and N′ = 3, which rep-
resents the updated probability estimate of at least an additional
fourth detection in the remainder of O4 after a hypothetical third
detection has been made.
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Fig. 2. Probability of at least one detection in the remainder of O4, as a
function of time T from the start of O4b, for three different prior choices
(different colours), keeping N′ = 2 fixed (i.e. assuming no detection,
solid lines). The dashed line represents the probability of at least one
hypothetical further detection after a third detection has been made dur-
ing O4b.
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