CBC Parameter Estimation

GW Open Data Workshop #7, 2024

Soichiro Morisaki

Source Characterization from Data

Masses: m_1, m_2

Higher masses
→ Shorter and louder signal

Chirp mass \mathcal{M} is measured most precisely,

$$\mathcal{M} = \frac{(m_1 m_2)^{\frac{3}{5}}}{(m_1 + m_2)^{\frac{1}{5}}}.$$

Figure: CBC signals starting from 20Hz 3

Spins: $\overrightarrow{\chi_1}$, $\overrightarrow{\chi_2}$

Spins aligned with orbital angular momentum \rightarrow longer signal

Credit: Vijay Varma et al., Binary Black Hole Explorer

Spins: $\overrightarrow{\chi_1}$, $\overrightarrow{\chi_2}$

Orthogonal spin components

- \rightarrow Precession of orbital plane
- → Amplitude and phase modulation

Masses and spins are key to probe the formation history of merging binary black holes.

Credit: Vijay Varma et al., Binary Black Hole Explorer ⁵

Tidal deformability parameters: Λ_1,Λ_2

Can constrain the properties of highly dense matter.

0.00

Source direction

Source direction is estimated with arrival time, amplitudes, and phases observed at multiple detectors.

Source parameters characterizing signal

15 binary black hole parameters + **1** additional parameter **per neutron star**

Figure: Schematic picture of neutron star black hole

- Masses: m_1, m_2 (Chirp mass \mathcal{M} and mass ratio $q \equiv m_2/m_1$ used for efficiency)
- Spins: $\overrightarrow{\chi_1}$, $\overrightarrow{\chi_2}$ (Spin magnitudes and angles typically used)
- Tidal deformabilities: Λ_1, Λ_2 (only for neutron stars)
- Right ascension RA/declination Dec
- Coalescence time t_c (Detector frame sky coordinates and time often used for efficiency)
- Luminosity distance D_L
- Orbital inclination angle θ_{JN}
- Polarization angle ψ
- Coalescence phase ϕ_c

Calibration uncertainties

Due to uncertainties in detector calibration, observed signal can be slightly different from true signal:

$$\tilde{h}_{\text{observed}}(f) = \tilde{h}_{\text{true}}(f) (1 + \delta A(f)) e^{i\delta\phi(f)}$$

Additional $2N_{\text{nodes}}$ parameters per detector: $\{\delta A(f_i), \delta \phi(f_i)\}$ $(i = 1, 2, ..., N_{\text{nodes}}).$

L. Sun et al., arXiv: 2107.00129.

Figure: Calibration uncertainties of amplitude (top) and phase (bottom) of LIGO-Hanford in O3

Posterior
$$\rightarrow p(\theta|d, M) = \frac{p(d|\theta, M)p(\theta|M)}{p(d|M)}$$

 $p(d|M) = \frac{p(d|M)p(\theta|M)}{p(d|M)}$

d: observed data

 θ : parameters (masses, spins etc.)

M: Signal hypothesis

$$Posterior \rightarrow p(\theta | d, M) = \frac{\mathcal{L}(d | \theta, M) \pi(\theta | M)}{\mathcal{Z}(d | M)}$$
Evidence

d: observed data

 θ : parameters (masses, spins etc.)

M: Signal hypothesis

$$Posterior \rightarrow p(\theta | d, M) = \frac{\mathcal{L}(d | \theta, M) \pi(\theta | M)}{\mathcal{Z}(d | M)}$$
Evidence

Prior encodes our prior knowledge or belief on θ .

- No information available → Use uninformative prior (e.g. isotropic on RA/Dec, uniform in masses etc.).
- It can incorporate information from electromagnetic observations or astrophysics (e.g. fixed to RA/Dec from electromagnetic obs., astrophysical mass prior etc.).

$$Posterior \rightarrow p(\theta | d, M) = \frac{\mathcal{L}(d | \theta, M) \pi(\theta | M)}{\mathcal{Z}(d | M)}$$

Evidence can be used for comparing different hypotheses/models (e.g. noise vs signal hypotheses, different waveform models etc.).

$$B = \frac{\mathcal{Z}(d|M_1)}{\mathcal{Z}(d|M_2)}, \quad B \gg 1 \to M_1 \text{ is favored}, \quad B \ll 1 \to M_2 \text{ is favored}.$$

 M_1, M_2 : two different hypotheses/models

Likelihood: $\mathcal{L}(d | \theta, M)$

CBC signal Noise $d(t) = h(t; \theta) + n(t).$

$$\mathcal{L}(d|\theta, M) = p(d - h(\theta)|\text{Noise})$$

Likelihood: $\mathcal{L}(d | \theta, M)$

• Noise is weakly stationary: $\langle n(t) \rangle = \text{const.}, \langle n(t)n(t') \rangle = R(|t - t'|).$

$$\rightarrow \langle \tilde{n}(f_l) \rangle = 0 \left(f_l = \frac{l}{T} > 0, T: \text{data duration} \right), \langle \tilde{n}^*(f_l) \tilde{n}(f_{l'}) \rangle \simeq \frac{TS(f_l)}{2} \delta_{ll'}.$$

 $S(f_l) = 2\langle |\tilde{n}(f_l)|^2 \rangle / T$ is referred to as Power Spectral Density (PSD) and characterizes noise variance at f_l .

• Noise follows Gaussian distribution.

Those assumptions lead to Whittle likelihood,

$$p(n|\text{Noise}) = \exp\left(-\frac{2}{T}\sum_{l}\frac{|\tilde{n}(f_{l})|^{2}}{S(f_{l})}\right).$$
$$\longrightarrow \mathcal{L}(d|\theta, M) \propto \exp\left[-\frac{2}{T}\sum_{l}\frac{|\tilde{d}(f_{l}) - \tilde{h}(f_{l};\theta)|^{2}}{S(f_{l})}\right].$$

Higher likelihood \rightarrow Smaller residual $|\tilde{d}(f_l) - \tilde{h}(f_l; \theta)|$

See J. Veitch et al. (2015): <u>https://arxiv.org/abs/1409.7215</u> for more context.

PSD estimation

• Average tens-hundreds of data sets which do not contain signal: $S(f_l) = 2\langle |\tilde{n}(f_l)|^2 \rangle / T.$

 Fit the spectra of on-source data to mitigate biases from non-stationary noise (See Littenberg and Cornish (2015): https://arxiv.org/abs/1410.3852).

Marginalization

1D posterior distribution

$$p(m_2|d, M) = \int p(\theta|d, M) \frac{dm_1 d\overline{\chi_1} d\overline{\chi_2} \dots}{\text{Except for } m_2}$$

2D posterior distribution

$$p(\text{RA, Dec}|d, M) = \int p(\theta|d, M) dm_1 dm_2 d\vec{\chi_1} d\vec{\chi_2} \dots$$

Except for RA, Dec

They require high-dimensional numerical integration.

-60°

Estimated source location of GW190814

18

Latest Circular
 Combined PHM

Stochastic sampling

Draw samples from posterior and histogram them!

Efficient algorithms for sampling

- Markov-chain Monte Carlo (MCMC)
- Nested sampling

Start from a random point θ .

Start from a random point θ .

Propose a next point θ' with proposal distribution $Q(\theta \rightarrow \theta')$. Accept that proposal with probability of min $\left\{1, \frac{p(\theta'|d,M)Q(\theta' \rightarrow \theta)}{p(\theta|d,M)Q(\theta \rightarrow \theta')}\right\}$.

Start from a random point θ .

Propose a next point θ' with proposal distribution $Q(\theta \rightarrow \theta')$. Accept that proposal with probability of min $\left\{1, \frac{p(\theta'|d,M)Q(\theta' \rightarrow \theta)}{p(\theta|d,M)Q(\theta \rightarrow \theta')}\right\}$.

Repeat this proposal-acceptance.

Start from a random point θ .

Propose a next point θ' with proposal distribution $Q(\theta \rightarrow \theta')$. Accept that proposal with probability of min $\left\{1, \frac{p(\theta'|d,M)Q(\theta' \rightarrow \theta)}{p(\theta|d,M)Q(\theta \rightarrow \theta')}\right\}$.

Repeat this proposal-acceptance.

The random point converges to a sample following posterior distribution.

Various open-source samplers

MCMC sampler

. . . .

- emcee: https://emcee.readthedocs.io/
- ptemcee: <u>https://github.com/willvousden/ptem</u> <u>cee</u>
- PyMC: <u>https://www.pymc.io/</u>
- zeus: <u>https://zeus-mcmc.readthedocs.io/</u>

Nested samplers

- dynesty: <u>https://dynesty.readthedocs.io/en/l</u> <u>atest/</u>
- nessai: <u>https://github.com/mj-will/nessai</u>
- Nestle: <u>http://kylebarbary.com/nestle/</u>
- pymultinest:
 <u>https://johannesbuchner.github.io/Py</u>
 <u>MultiNest/index.html</u>

Bilby: a user-friendly Bayesian inference library

- Python codes, installable with pip/conda.
- All the components necessary for CBC parameter inference built in (likelihood, frequently-used priors, useful parameter conversion functions etc.)
- Supports open-source samplers and the native one: bilby-mcmc.
- Can be used for non-CBC problems (See Tutorial 3.1).
- Can simulate CBC signals as well as analyzing real data (See Tutorial 3.2).

References: Ashton+ ApJS **241** 27 (2019), Romero-Shaw+ MNRAS **499** 3 (2020).

Playing with posterior samples

In [2]

Posterior samples have been released from LVK.

- 01,02: https://dcc.ligo.org/LIGO-P1800370/public
- 03a: https://zenodo.org/record/65136 31
- O3b: https://zenodo.org/record/55466 63

ln [2]:	sampl	es				
Out[2]:						
		costheta_jn	luminosity_distance_Mpc	right_ascension	declination	m1_detec
	0	-0.976633	517.176717	1.456176	-1.257815	
	1	-0.700404	401.626864	2.658802	-0.874661	
	2	-0.840752	369.579071	1.106548	-1.136396	
	3	-0.583657	386.935268	2.077180	-1.246351	
	4	-0.928271	345.104345	0.993604	-1.069243	
	8345	-0.691637	306.985025	1.485646	-1.269228	
	8346	-0.834615	462.649414	2.065362	-1.265618	
	8347	-0.911463	448.930876	1.536913	-1.257956	
	8348	-0.856914	561.020036	2.367289	-1.211824	
	8349	-0.919556	519.641782	1.916675	-1.250801	

8350 rows × 10 columns

Playing with posterior samples

In [3]: import matplotlib.pyplot as plt

plt.hist(samples["luminosity_distance_Mpc"], density=True, bins=100)
plt.xlabel("Luminosity distance (Mpc)")
plt.ylabel("Probability distribution")
plt.show()

Histogram of samples gives 1D posterior distribution.

The 90% credible interval can be obtained by calculating the 5th and 95th percentiles of samples.

Conclusion

- Source parameters such as masses, spins, and tidal deformability parameters of colliding objects can be measured with observed gravitational-wave waveform.
- Source parameter estimation is typically performed with Bayesian inference, where likelihood is computed under the assumption of stationary Gaussian noise.
- We generate random samples following Bayesian posterior probability distribution and make their histograms to estimate source parameter values we are interested in.
- Useful references
 - Bilby documentation: <u>https://lscsoft.docs.ligo.org/bilby/</u>
 - Thrane and Talbot (2019): <u>https://arxiv.org/abs/1809.02293</u>

Tests of general relativity (GR)

Introduce parameters controlling deviation from GR predictions:

 $\tilde{h}(f) = A(f)e^{i\Phi(t)}, \qquad \Phi(t) = \Phi_{GR}(t) + \Delta \varphi_n f^{\frac{n-5}{3}}.$

Figure: Constraints on deviation of GW170817 from GR predictions